Skip to main content

Recursively enumerable reals and chaitin Ω numbers

  • Complexity IV
  • Conference paper
  • First Online:
STACS 98 (STACS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1373))

Included in the following conference series:

Abstract

A real α is called recursively enumerable if it is the limit of a recursive, increasing, converging sequence of rationals. Following Solovay [23] and Chaitin [10] we say that an r.e. real α dominates an r.e. real β if from a good approximation of a from below one can compute a good approximation of β from below. We shall study this relation and characterize it in terms of relations between r.e. sets. Solovay's [23] Ω-like numbers are the maximal r.e. real numbers with respect to this order. They are random r.e. real numbers. The halting probability of a universal self-delimiting Turing machine (Chaitin's Ω number, [9]) is also a random r.e. real. Solovay showed that any Chaitin Ω number is Ω-like. In this paper we show that the converse implication is true as well: any Ω-like real in the unit interval is the halting probability of a universal self-delimiting Turing machine.

The first and third authors were partially supported by AURC A18/XXXXX/ 62090/F3414056, 1996. The second author was supported by the DFG Research Grant No. HE 2489/2-1, and the fourth author was supported by an AURC Post-Doctoral Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. H. Bennett, M. Gardner. The random number omega bids fair to hold the mysteries of the universe, Scientific American 241 (1979), 20–34.

    Article  Google Scholar 

  2. C. H. Bennett. Logical depth and physical complexity, in R. Herken (ed.). The Universal Turing Machine. A Half-Century Survey, Oxford University Press, Oxford, 1988, 227–258.

    Google Scholar 

  3. D. S. Bridges, F. Richman. Varieties of Constructive Mathematics, Cambridge University Press, Cambridge, 1987.

    MATH  Google Scholar 

  4. C. Calude. Information and Randomness. An Algorithmic Perspective, Springer-Verlag, Berlin, 1994.

    MATH  Google Scholar 

  5. C. Calude and C. Grozea. Kraft-Chaitin inequality revisited, J. UCS 5 (1996), 306–310.

    MathSciNet  Google Scholar 

  6. C. Calude, F. W. Meyerstein. Is the universe lawful?, Chaos, Solitons & Fractals, (to appear).

    Google Scholar 

  7. C. Calude, A. Salomaa. Algorithmically coding the universe, in G. Rozenberg, A. Salomaa (eds.), Developments in Language Theory, World Scientific, Singapore, 1994, 472–492.

    Google Scholar 

  8. G. J. Chaitin. On the length of programs for computing finite binary sequences, J. Assoc. Comput. Mach. 13 (1966), 547–569. (Reprinted in: [111, 219–244)

    MATH  MathSciNet  Google Scholar 

  9. G. J. Chaitin. A theory of program size formally identical to information theory, J. Assoc. Comput. Mach. 22 (1975), 329–340. (Reprinted in: [11], 113–128)

    MATH  MathSciNet  Google Scholar 

  10. G. J. Chaitin. Algorithmic information theory, IBM J. Res. Develop. 21 (1977), 350–359, 496. (Reprinted in: [11], 44–58)

    Article  MATH  MathSciNet  Google Scholar 

  11. G. J. Chaitin. Information, Randomness and Incompleteness, Papers on Algorithmic Information Theory, World Scientific, Singapore, 1987. (2nd ed., 1990)

    MATH  Google Scholar 

  12. G. J. Chaitin. The Limits of Mathematics, Springer-Verlag, Singapore, 1997.

    Google Scholar 

  13. D. Juedes, J. Lathrop, and J. Lutz. Computational depth and reducibility, Theoret. Comput. Sci. 132 (1994), 37–70.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Kautz. Degrees of Random Sets, PhD Thesis, Cornell University, Ithaca, 1991.

    Google Scholar 

  15. Ker-I. Ko. Complexity Theory of Real Functions, Birkhäuser, Boston, 1991.

    MATH  Google Scholar 

  16. A. N. Kolmogorov. Three approaches for defining the concept of “information quantity”, Problems Inform. Transmission 1 (1965), 3–11.

    MATH  MathSciNet  Google Scholar 

  17. A. Kucera. Measure, Π 01 -classes and complete extensions of PA, H.-D. Ebbinghaus, G. H. Müller, G. E. Sacks (eds.), Recursion Theory Week (Oberwolfach, 1984), Lecture Notes in Math. 1141, Springer-Verlag, Berlin, 1985, 245–259.

    Google Scholar 

  18. L. A. Levin. On the notion of a random sequence, Soviet Math. Dokl. 14 (1973), 1413–1416.

    MATH  Google Scholar 

  19. P. Martin-Löf. The definition of random sequences, Inform. and Control 9 (1966), 602–619.

    Article  Google Scholar 

  20. C. P. Schnorr. Process complexity and effective random tests, J. Comput. System Sci. 7 (1973), 376–388.

    Article  MATH  MathSciNet  Google Scholar 

  21. R. I. Soare. Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  22. R. J. Solomonoff. A formal theory of inductive inference, Part 1 and Part 2, Inform. and Control 7 (1964), 1–22 and 224–254.

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Solovay. Draft of a paper (or series of papers) on Chaitin's work ... done for the most part during the period of Sept.–Dec. 1974, unpublished manuscript, IBM T. J. Watson Research Center, Yorktown Heights, New York, May 1975, 215 pp.

    Google Scholar 

  24. Y. Wang. Randomness and Complexity, PhD Thesis, Universität Heidelberg, Germany, 1996.

    MATH  Google Scholar 

  25. K. Weihrauch. Computability, Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michel Morvan Christoph Meinel Daniel Krob

Additional information

Dedicated to G. J. Chaitin for his 50th Birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Calude, C.S., Hertling, P.H., Khoussainov, B., Wang, Y. (1998). Recursively enumerable reals and chaitin Ω numbers. In: Morvan, M., Meinel, C., Krob, D. (eds) STACS 98. STACS 1998. Lecture Notes in Computer Science, vol 1373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028594

Download citation

  • DOI: https://doi.org/10.1007/BFb0028594

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64230-5

  • Online ISBN: 978-3-540-69705-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics