Skip to main content

Advertisement

Log in

Reactive Oxygen-induced Carcinogenesis Causes Hypermethylation of p16Ink4a and Activation of MAP Kinase

  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Implantation of foreign materials into mice and humans has been noted to result in the appearance of soft tissue sarcomas at the site of implantation. These materials include metal replacement joints and Dacron vascular grafts. In addition, occupational exposure to nickel has been shown to result in an increased risk of carcinogenesis. The molecular mechanisms of foreign body-induced carcinogenesis are not fully understood. Materials and Methods: In order to gain insight into these mechanisms, we implanted nickel sulfide into wild type C57BL/6 mice as well as a mouse heterozygous for the tumor suppressor gene, p53. Malignant fibrous histiocytomas arose in all mice, and we have characterized the profile of tumor suppressor genes and signal transduction pathways altered in these cells.

Results

All tumors demonstrated hypermethylation of the tumor suppressor gene p16, as well as activation of the mitogen activated protein kinase (MAP kinase) signaling pathway. This knowledge may be beneficial in the prevention and treatment of tumors caused by foreign body implantation.

Conclusions

Oxidative stress induced by nickel sulfide appears to cause loss of p16 and activation of MAP kinase signaling. These findings support the hypothesis of synergistic interactions between MAP kinase activation and p16 loss in carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Lotem J, Peled-Kamar M, Groner Y, Sachs L. (1996) Cellular oxidative stress and the control of apoptosis by wild-type p53, cytotoxic compounds, and cytokines. Proc. Natl. Acad. Sci. USA 93: 9166–9171.

    Article  CAS  PubMed  Google Scholar 

  2. Driscoll KE, Carter JM, Howard BW, et al. (1998) Crocidolite activates NF-kappa B and MIP-2 gene expression in rat alveolar epithelial cells. Role of mitochrondrial-derived oxidants. Environ. Health Perspect.106Suppl 5: 1171–1174.

    Google Scholar 

  3. Meyskens FL, Jr, Buckmeier JA, McNulty SE, Tohidian NB. (1999) Activation of nuclear factor-kappa B in human metastatic melanomacells and the effect of oxidative stress. Clin. Cancer Res. 5: 1197–1202.

    PubMed  CAS  Google Scholar 

  4. Tanaka T, Iwasa Y, Kondo S, et al. (1999) High incidence of allelic loss on chromosome 5 and inactivation of p15INK4B and p16INK4A tumor suppressor genes in oxystress-induced renal cell carcinoma of rats. Oncogene 18: 3793–3797.

    Article  CAS  PubMed  Google Scholar 

  5. Costa M, Mollenhauer HH. (1980) Phagocytosis of nickel subsulfide particles during the early stages of neoplastic transformation in tissue culture. Cancer Res. 40: 2688–2694.

    PubMed  CAS  Google Scholar 

  6. Costa M. (1991) Molecular mechanisms of nickel carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 31: 321–337.

    Article  CAS  PubMed  Google Scholar 

  7. Klein CB, Costa M. (1997) DNA methylation, heterochromatin and epigenetic carcinogens. Mutat. Res. 386: 163–180.

    Article  CAS  PubMed  Google Scholar 

  8. Nackerdien Z, Kasprzak KS, Rao G, et al. (1991) Nickel(II)—and cobalt(II)–dependent damage by hydrogen peroxide to the DNA bases in isolated human chromatin. Cancer Res. 51: 5837–5842.

    PubMed  CAS  Google Scholar 

  9. Abbracchio MP, Heck JD, Costa M. (1982). The phagocytosis and transforming activity of crystalline metal sulfide particles are related to their negative surface charge. Carcinogenesis 3: 175–180.

    Article  CAS  PubMed  Google Scholar 

  10. Costa M, Abbracchio MP, Simmons-Hansen J. (1981) Factors influencing the phagocytosis, neoplastic transformation, and cytotoxicity of particulate nickel compounds in tissue culture systems. Toxicol. Appl. Pharmacol. 60: 313–323.

    Article  CAS  PubMed  Google Scholar 

  11. Abbracchio MP, Simmons-Hansen J, Costa M. (1982) Cytoplasmic dissolution of phagocytized crystalline nickel sulfide particles: a prerequisite for nuclear uptake of nickel. J. Toxicol. Environ. Health 9: 663–676.

    Article  CAS  PubMed  Google Scholar 

  12. Reger RB, Morgan WK. (1993) Respiratory cancers in mining. Occup. Med. 8: 185–204.

    PubMed  CAS  Google Scholar 

  13. Tveito G, Hansteen IL, Dalen H, Haugen A. (1989) Immortalization of normal human kidney epithelial cells by nickel(II). Cancer Res. 49: 1829–1835.

    PubMed  CAS  Google Scholar 

  14. Broday L, Peng W, Kuo MH, et al. (2000) Nickel compounds are novel inhibitors of histone H4 acetylation. Cancer Res. 60: 238–241.

    PubMed  CAS  Google Scholar 

  15. Salnikow K, Blagosklonny MV, Ryan H, et al. (2000) Carcinogenic nickel induces genes involved with hypoxic stress. Cancer Res. 60: 38–41.

    PubMed  CAS  Google Scholar 

  16. Salnikow K, Kluz T, Costa M. (1999) Role of Ca(2 +) in the regulation of nickel-inducible Cap43 gene expression. Toxicol. Appl. Pharmacol. 160: 127–132.

    Article  CAS  PubMed  Google Scholar 

  17. Arbiser JL, Raab G, Rohan RM, et al. (1999) Isolation of mouse stromal cells associated with a human tumor using differential diphtheria toxin sensitivity. Am. J. Pathol. 155: 723–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arbiser JL, Moses MA, Fernandez CA, et al. (1997) Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc. Natl. Acad. Sci. USA 94: 861–866.

    Article  CAS  PubMed  Google Scholar 

  19. Gressani KM, Rollins LA, Leone-Kabler S, et al. (1998) Induction of mutations in Ki-ras and INK4a in liver tumors of mice exposed in utero to 3-methylcholanthrene. Carcinogenesis 19: 1045–1052.

    Article  CAS  PubMed  Google Scholar 

  20. Gressani KM, Leone-Kabler S, O’Sullivan MG, et al. (1999) Strain-dependent lung tumor formation in mice transplacentally exposed to 3-methylcholanthrene and post-natally exposed to butylated hydroxytoluene. Carcinogenesis 20: 2159–2165.

    Article  CAS  PubMed  Google Scholar 

  21. Rollins LA, Leone-Kabler S, O’Sullivan MG, Miller MS. (1998) Role of tumor suppressor genes in transplacental lung carcinogenesis. Mol. Carcinog. 21: 177–184.

    Article  CAS  PubMed  Google Scholar 

  22. Zakut-Houri R, Oren M, Bienz B, et al. (1983) A single gene and a pseudogene for the cellular tumour antigen p53. Nature 306: 594–597.

    Article  CAS  PubMed  Google Scholar 

  23. Hegi ME, Soderkvist P, Foley JF. (1993) Characterization of p53 mutations in methylene chloride-induced lung tumors from B6C3F1 mice m[see comments]. Carcinogenesis 14: 803–810.

    Article  CAS  PubMed  Google Scholar 

  24. Herman JG, Graff JR, Myohanen S, et al. (1996) Methylationspecific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93: 9821–9826.

    Article  CAS  PubMed  Google Scholar 

  25. Swafford DS, Middleton SK, Palmisano WA, et al. (1997) Frequent aberrant methylation of p16INK4a in primary rat lung tumors. Mol. Cell Biol. 17: 1366–1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arbiser JL, Weiss SW, Arbiser ZK, et al. (2001) Differential expression of active mitogen-activated protein kinase in cutaneous endothelial neoplasms: Implications for biologic behavior and response to therapy. J. Am. Acad. Dermatol. 44: 1–5.

    Article  Google Scholar 

  27. Evans RM, Davies PJ, Costa M. (1982) Video time-lapse microscopy of phagocytosis and intracellular fate of crystalline nickel sulfide particles in cultured mammalian cells. Cancer Res. 42: 2729–2735.

    PubMed  CAS  Google Scholar 

  28. Bencko V. (1983) Nickel: a review of its occupational and environmental toxicology. J. Hyg. Epidemiol. Microbiol. Immunol. 27: 237–247.

    PubMed  CAS  Google Scholar 

  29. Huang X, Zhuang Z, Frenkel K. (1994) The role of nickel and nickel-mediated reactive oxygen species in the mechanism of nickel carcinogenesis. Environ. Health Perspect. 102 Suppl 3: 281–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heinemann DE, Lohmann C, Siggelkow H. (2000) Human osteoblast-like cells phagocytose metal particles and express the macrophage marker CD68 in vitro. J. Bone Joint Surg. Br. 82: 283–289.

    Article  CAS  PubMed  Google Scholar 

  31. Ben Izhak O, Vlodavsky E, Ofer A, et al. (1999) Epithelioid angiosarcoma associated with a Dacron vascular graft. Am. J. Surg. Pathol. 23: 1418–1422.

    Article  Google Scholar 

  32. Kirkpatrick CJ, Alves A, Kohler H, et al. (2000) Biomaterial-induced sarcoma: A novel model to study preneoplastic change. Am. J. Pathol. 156: 1455–1467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liang R, Senturker S, Shi X, et al. (1999) Effects of Ni(II) and Cu(II) on DNA interaction with the N-terminal sequence of human protamine P2: enhancement of binding and mediation of oxidative DNA strand scission and base damage. Carcino-genesis 20: 893–898.

    Article  CAS  Google Scholar 

  34. Salnikow K, Gao M, Voitkun V, et al. (1994) Altered oxidative stress responses in nickel-resistant mammalian cells. Cancer Res. 54: 6407–6412.

    PubMed  CAS  Google Scholar 

  35. Zaman K, Ryu H, Hall D, et al. (1999) Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. J. Neurosci. 19: 9821–9830.

    Article  CAS  PubMed  Google Scholar 

  36. Salnikow K, Wang S, Costa M. (1997) Induction of activating transcription factor 1 by nickel and its role as a negative regulator of thrombospondin I gene expression. Cancer Res. 57: 5060–5066.

    PubMed  CAS  Google Scholar 

  37. Zatterale A, Kelly FJ, Korkina LG, et al. (1999) Oxidative stress in cancer prone genetic diseases: a review. Ann. Ist. Super. Sanita 35: 205–209.

    PubMed  CAS  Google Scholar 

  38. Bartsch H, Ohshima H, Pignatelli B, Calmels S. (1992) Endogenously formed N-nitroso compounds and nitrosating agents in human cancer etiology. Pharmacogenetics 2: 272–277.

    Article  CAS  PubMed  Google Scholar 

  39. Mansour SJ, Matten WT, Hermann AS, et al. (1994) Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265: 966–970.

    Article  CAS  PubMed  Google Scholar 

  40. Cowley S, Paterson H, Kemp P, Marshall CJ. (1994) Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77: 841–852.

    Article  CAS  PubMed  Google Scholar 

  41. Linardopoulos S, Street AJ, Quelle DE, et al. (1995) Deletion and altered regulation of p16Ink4a and p15INK4b in undifferentiated mouse skin tumors. Cancer Res. 55: 5168–5172.

    PubMed  CAS  Google Scholar 

  42. Hussussian CJ, Struewing JP, Goldstein AM, et al. (1994) Germline p16 mutations in familial melanoma. Nat. Genet. 8: 15–21.

    Article  CAS  PubMed  Google Scholar 

  43. Moskaluk CA, Hruban RH, Kern SE. (1997) p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res. 57: 2140–2143.

    PubMed  CAS  Google Scholar 

  44. Cody DT, Huang Y, Darby CJ, et al. (1999) Differential DNA methylation of the p16 INK4A/CDKN2A promoter in human oral cancer cells and normal human oral keratinocytes. Oral Oncol. 35: 516–522.

    Article  CAS  PubMed  Google Scholar 

  45. Wong AK, Chin L. (2000) An inducible melanoma model implicates a role for RAS in tumor maintenance and angiogenesis. Cancer Metastasis Rev. 19: 121–129.

    Article  CAS  PubMed  Google Scholar 

  46. Klafter R, Arbiser JL. (2000) Regulation of angiogenesis and tumorigenesis by signal transduction cascades: lessons from benign and malignant endothelial tumors. J. Investig. Dermatol. Symp. Proc. 5: 79–82.

    Article  CAS  PubMed  Google Scholar 

  47. Tsao H, Zhang X, Fowlkes K, Haluska FG. (2000) Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines. Cancer Res. 60: 1800–1804.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by a Dermatology Foundation Dermik Laboratories Research Grant, a grant from the American Skin Association, grants from the National Institutes of Health AR02030 and RO1 AR47901, and NIAMS Emory Skin Disease Research Core Center P30 AR42687 (JLA). We acknowledge Drs. Lynda Chin and Jef French for helpful discussion. This project was supported in part by the National Research Service Award (NRSA), HL07842 (RK) from the National Institutes of Health, National Heart, Lung and Blood Institute, grants RO1 ES06501 and ES08252 (MSM) from the National Institute of Environmental Health Sciences and Cancer Center Support Grant P30 CA12197 from the National Cancer Institute, which provided support for the Wake Forest University Analytical Imaging Core Facility, the DNA Synthesis Core Laboratory, and the DNA Sequencing and Gene Analysis Facility. We thank Ms. Elyse Jung for assistance with the automated sequencing. Presented in part at the American Association for Cancer Research 91st Annual Meeting, San Francisco, 2000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack L. Arbiser.

Additional information

Communicated by J. Folkman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govindarajan, B., Klafter, R., Miller, M.S. et al. Reactive Oxygen-induced Carcinogenesis Causes Hypermethylation of p16Ink4a and Activation of MAP Kinase. Mol Med 8, 1–8 (2002). https://doi.org/10.1007/BF03401997

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401997

Keywords

Navigation