Skip to main content

Advertisement

Log in

Developmental Expression of Wild-Type and Mutant Presenilin-1 in Hippocampal Neurons from Transgenic Mice: Evidence for Novel Species-Specific Properties of Human Presenilin-1

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Presenilins 1 (PS1) and 2 (PS2) are multispanning transmembrane proteins associated with familial Alzheimer disease (FAD). They are developmentally regulated, being expressed at highest levels during neuronal differentiation and are sustained at a lower level throughout life. We investigated the distribution and metabolism of endogenous murine PS1 as well as human wild-type (wtPS1) and the familial AD Metl46Leu (M146L) mutant presenilins in dissociated cultures of hippocampal neurons derived from control and transgenic mice. We found that the PS1 endoproteolytic fragments and, to a lesser extent, the full-length protein, were expressed as early as day 3 post-plating. Both species increased until the cells were fully differentiated at day 12. Confocal microscopy revealed that presenilin is present in the Golgi and endoplasmic reticulum and, as in punctate, vesicle-like structures within developing neuntes and growth cones. Using a human-specific PS1 antibody, we were able to independently examine the distribution of the transgenic protein which, although similar to the endogenous, showed some unique qualities. These included (i) some heterogeneity in the proteolytic fragments of human PS1; (ii) significantly reduced levels of full-length human PS1, possibly as a result of preferential processing; and (iii) a more discrete intracellular distribution of human PS1. Colocalization with organelle-specific proteins revealed that PS1 was located in a diffuse staining pattern in the MAP2-positive dendrites and in a punctate manner in GAP43-positive axons. PS1 showed considerable overlap with GAP43, particularly at the growth cones. Similar patterns of PS1 distribution were detected in cultures derived from transgenic animals expressing human wild-type or mutant presenilins. The studies demonstrate that mutant presenilins are not grossly different in their processing or distribution within cultured neurons, which may represent more physiological models as compared to transfection systems. Our data also suggest that the molecular pathology associated with PS1 mutations results from subtle alterations in presenilin function, which can be further investigated using these transgenic neuronal cell culture models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sherrington R, Rogaev EI, Liang Y, et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375: 754–760.

    Article  CAS  PubMed  Google Scholar 

  2. Levy-Lehad E, Wijsman EM, Nemens E, et al. (1995) A familial Alzheimer’s disease locus on chromosome 1. Science 269: 970–973.

    Article  Google Scholar 

  3. Levy-Lahad E, Wasco W, Poorkaj P, et al. (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269: 973–977.

    Article  CAS  PubMed  Google Scholar 

  4. Rogaev EI, Sherrington R, Rogaeva EA, et al. (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376: 775–778.

    Article  CAS  PubMed  Google Scholar 

  5. Thinakaran G, Borchelt DR, Lee MK, et al. (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17: 181–190.

    Article  CAS  PubMed  Google Scholar 

  6. Lemere CA, Lopera F, Kosik KS, et al. (1996) The E280A presenilin 1 Alzheimer mutation produces increased Aβ42 deposition and severe cerebellar pathology. Nat. Med. 2: 1146–1150.

    Article  CAS  PubMed  Google Scholar 

  7. Seeger M, Nordstedt C, Petanceska S, et al. (1997) Evidence for phosphorylation and oligomeric assembly of presenilin 1. Proc. Natl. Acad. Sci. U.S.A. 94: 5090–5094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thinakaran G, Regard JB, Boulton CML, et al. (1998) Stable association of presenilin derivatives and absence of presenilin interactions with APP. Neurobiol. Dis. 4: 438–453.

    Article  CAS  PubMed  Google Scholar 

  9. Yu G, Chen F, Levesque G, et al. (1998) The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains β-catenin. J. Biol. Chem. 273: 16470–16475.

    Article  CAS  PubMed  Google Scholar 

  10. Cribbs DH, Chen L-S, Bende SM, LaFerla FM. (1996) Widespread neuronal expression of the presenilin-1 early-onset Alzheimer’s disease gene in the murine brain. Am. J. Pathol. 148: 1797–1806.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Elder GA, Tezapsidis N, Carter J, et al. (1996) Identification and neuron specific expression of the S182/presenilin 1 protein in human and rodent brains. J. Neurosci. Res. 45: 308–320.

    Article  CAS  PubMed  Google Scholar 

  12. Lee MK, Slunt HH, Martin LJ, et al. (1996) Expression of presenilin 1 and 2 (PS1 and PS2) in human and murine tissues. J. Neurosci. 16: 7513–7525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moussaoui S, Czech C, Pradier L, et al. (1996) Immunohistochemical analysis of presenilin-1 expression in the mouse brain. FEBS Lett. 383: 219–222.

    Article  CAS  PubMed  Google Scholar 

  14. Page K, Hollister R, Tanzi RE, Hyman BT. (1996) In situ hybridization analysis of presenilin-1 mRNA in Alzheimer disease and in lesioned rat brain. Proc. Natl. Acad. Sci. U.S.A. 93: 14020–14024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lah JL, Heilman CJ, Nash NR, Rees HD, Yi H, Counts SE, Levey AI. (1997) Light and electron microscopic localization of presenilin −1 in primate brain. J. Neurosci. 17: 1971–1980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Murphy GM Jr, Forno LS, Ellis WG, et al. (1996) Antibodies to presenilin proteins detect neurofibrillary tangles in Alzheimer’s disease. Am. J. Pathol. 149: 1839–1846.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Uchihara T, El Hachimi HK, Duyckaerts C, et al. (1996) Widespread immunoreactivity of presenilin in neurons of normal and Alzheimer’s disease brains: double-labelling immunohistochemical study. Acta Neuropathol. 92: 325–330.

    Article  CAS  PubMed  Google Scholar 

  18. Kim KS, Wegiel J, Sapienza V, Chen J, Hong H, Wisniewski HM. (1997) Immunoreactivity of presenilin-1 in human, rat and mouse brain. Brain Res. 757: 159–163.

    Article  CAS  PubMed  Google Scholar 

  19. Doan A, Thinakaran G, Borchelt DR, et al. (1996) Protein topology of presenilin 1. Neuron 17: 1023–1030.

    Article  CAS  PubMed  Google Scholar 

  20. Kovacs DM, Fausett HJ, Page KJ, et al. (1996) Alzheimer-associated presenilins 1 and 2: Neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nat. Med. 2: 224–229.

    Article  CAS  PubMed  Google Scholar 

  21. De Strooper B, Beullens M, Contreras B, et al. (1997) Phosphorylation, subcellular localization, and membrane orientation of the Alzheimer’s disease-associated presenilins. J. Biol. Chem. 272: 3590–3598.

    Article  PubMed  Google Scholar 

  22. Johnston JA, Froelich S, Lannfelt L, Cowburn RF. (1996) Quantification of presenilin-1 mRNA in Alzheimer’s disease brains. FEBS Lett. 394: 279–284.

    Article  CAS  PubMed  Google Scholar 

  23. Borchelt DR, Thinakaran G, Eckman CB, et al. (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβl–42/1–40 ratio in vitro and in vivo. Neuron 17: 1005–1013.

    Article  CAS  PubMed  Google Scholar 

  24. Duff K, Eckman C, Zehr C, et al. (1996) Increased amyloid-β42(43) in brains of mice expressing mutant presenilin 1. Nature 383: 710–713.

    Article  CAS  PubMed  Google Scholar 

  25. Scheuner D, Eckman C, Jensen M, et al. (1996) Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med. 2: 864–870.

    Article  CAS  PubMed  Google Scholar 

  26. Citron M, Westaway D, Xia W, et al. (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nat. Med. 3: 67–72.

    Article  CAS  PubMed  Google Scholar 

  27. Borchelt DR, Ratovitski T, van Lare J, et al. (1997) Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19: 939–945.

    Article  CAS  PubMed  Google Scholar 

  28. Marambaud P, Ancolio K, Lopez-Perez E, Checler F. (1998) Proteasome inhibitors prevent the degradation of familial Alzheimer’s disease-linked presenilin 1 and potentiate A β 42 recovery from human cells. Mol. Med. 4: 147–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Murayama O, Honda T, Mercken M, et al. (1997) Different effects of Alzheimer-associated mutations of presenilin 1 on its processing. Neurosci. Lett. 229: 61–64.

    Article  CAS  PubMed  Google Scholar 

  30. De Strooper B, Saftig P, Craessaerts K, et al. (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391: 387–390.

    Article  CAS  PubMed  Google Scholar 

  31. Liguri G, Cecchi C, Latorraca S, Pieri A, Sorbi S, Degl’Tnnocenti D, Ramponi G. (1996) Alteration of acylphosphatase levels in familial Alzheimer’s disease fibroblasts with presenilin gene mutations. Neurosci. Lett. 210: 153–156.

    Article  CAS  PubMed  Google Scholar 

  32. Guo Q, Furukawa K, Sopher BL, et al. (1996) Alzheimer’s PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid β-peptide. Neuroreport 8: 379–383.

    Article  CAS  PubMed  Google Scholar 

  33. Wong PC, Zheng H, Chen H, et al. (1997) Presenilin 1 is required for Notch 1 and Dll1 expression in the paraxial mesoderm. Nature 387: 288–292.

    Article  CAS  PubMed  Google Scholar 

  34. Pederson WA, Guo Q, Hartman BK, Mattson MP. (1997) Nerve growth factor independent reduction in choline acetyltransferase activity in PC12 cells expressing mutant presenilin-1. J. Biol. Chem. 272: 22397–22400.

    Article  Google Scholar 

  35. Wolozin B, Iwasaki K, Vito P, et al. (1996) Participation of presenilin 2 in apoptosis: Enhanced basal activity conferred by an Alzheimer mutation. Science 274: 1710–1713.

    Article  CAS  PubMed  Google Scholar 

  36. Levitan D, Greenwald I. (1995) Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377: 351–354.

    Article  CAS  PubMed  Google Scholar 

  37. Li X, Greenwald I. (1997) HOP-1, a Caenorhabditis elegans presenilin, appears to be functionally redundant with SEL-12 presenilin and to facilitate LIN-12 and GLP-1 signaling. Proc. Natl. Acad. Sci. U.S.A. 94: 12204–12209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Levitan D, Doyle TG, Brousseau D, et al. (1996) Assessment of normal and mutant presenilin function in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 93: 14940–14944.

    Article  CAS  PubMed  Google Scholar 

  39. Baumeister R, Leimer U, Zweckbronner I, Jakubek C, Grünberg J, Haass C. (1997) Human presenilin-1, but not familial Alzheimer’s disease (FAD) mutants, facilitate Caenorhabditis elegans Notch signalling independently of proteolytic processing. Genes Function 1: 149–159.

    Article  CAS  PubMed  Google Scholar 

  40. De Strooper B, Annaert W, Cupers P, et al. (1999) A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398: 518–522.

    Article  CAS  PubMed  Google Scholar 

  41. Struhl G, Greenwald I. (1999) Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398: 522–526.

    Article  CAS  PubMed  Google Scholar 

  42. Ye Y, Lukinova N, Fortini ME. (1999) Neurogenic phenotypes and altered Notch processing in Drosophila presenilin mutants. Nature 398: 525–529.

    Article  CAS  PubMed  Google Scholar 

  43. Takahashi H, Murayama M, Takashima A, et al. (1996) Molecular cloning and expression of the rat homologue of presenilin-1. Neurosci. Lett. 206: 113–116.

    Article  CAS  PubMed  Google Scholar 

  44. Berezovska O, Xia MQ, Page K, Wasco W, Tanzi RE, Hyman BT. (1997) Developmental regulation of presenilin mRNA expression parallels Notch expression. J. Neuropathol. Exp. Neurol. 56: 40–44.

    Article  CAS  PubMed  Google Scholar 

  45. Hartmann H, Busciglio J, Baumann K-H, Staufenbiel M, Yankner BA. (1997) Developmental regulation of presenilin-1 processing in the brain suggests a role in neuronal differentiation. J. Biol. Chem. 272: 14505–14508.

    Article  CAS  PubMed  Google Scholar 

  46. Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S. (1997) Skeletal and CNS defects in presenilin-1-deficient mice. Cell 89: 629–639.

    Article  CAS  PubMed  Google Scholar 

  47. Conlon RA, Reaume AG, Rossant J. (1995) Notch 1 is required for the coordinate segmentation of somites. Development 121: 1533–1545.

    PubMed  CAS  Google Scholar 

  48. Goslin K, Banker GA. (1991) Rat hippocampal neurons in low density cultures. In: Banker G, Goslin K (eds). Culturing Nerve Cells. MIT Press, Cambridge, pp. 251–281.

    Google Scholar 

  49. Thinakaran G, Harris CL, Ratovitski T, et al. (1997) Evidence that levels of presenilins (PS1 and PS2) are coordinately regulated by competition for limiting cellular factors. J. Biol. Chem. 272: 28415–28422.

    Article  CAS  PubMed  Google Scholar 

  50. Ratovitski T, Slunt HH, Thinakaran G, Price DL, Sisodia SS, Borchelt DR. (1997) Endoproteolytic processing and stabilization of wild-type and mutant presenilin. J. Biol. Chem. 272: 24536–24541.

    Article  CAS  PubMed  Google Scholar 

  51. Capell A, Saffrich R, Olivo J-C, et al. (1997) Cellular expression and proteolytic processing of presenilin proteins is developmentally regulated during neuronal differentiation. J. Neurochem. 69: 2432–2440.

    Article  CAS  PubMed  Google Scholar 

  52. Podlisny MB, Citron M, Amarante P, et al. (1997) Presenilin proteins undergo heterogenous endoproteolysis between Thr291 and Ala299 and occur as stable N- and C-terminal fragments in normal and Alzheimer brain tissue. Neurobiol Dis. 3: 325–337.

    Article  CAS  PubMed  Google Scholar 

  53. Dotti CG, Sullivan CA, Banker GA. (1988) The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8: 1454–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Krijnse-Locker J, Parton RG, Fuller SD, Griffiths G, Dotti CG. (1995) The organization of the endoplasmic reticulum and the intermediate compartment in cultured rat hippocampal neurons. Mol. Biol. Cell 6: 1315–1332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Craig AM, Banker G. (1994) Neuronal polarity. Annu. Rev. Neurosci. 17: 267–310.

    Article  CAS  PubMed  Google Scholar 

  56. Letourneau PC, Cypher C. (1991) Regulation of growth cone motility. Cell Motil. Cytoskel. 20: 267–271.

    Article  CAS  Google Scholar 

  57. Fraser PE, Levesque G, Yu G, et al. (1998) Presenilin 1 is acively degraded by the 26S proteasome. Neurobiol. Aging 19: S19–S21.

    Article  CAS  PubMed  Google Scholar 

  58. Walter J, Capell A, Grünberg J, et al. (1996) The Alzheimer’s disease associated presenilins are differentially phosphorylated proteins located predominantly within the endoplasmic reticulum. Mol. Med. 2: 673–691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Cook DB, Sung JC, Golde TE, et al. (1996) Expression and analysis of presenilin 1 in a human neuronal system: Localization in cell bodies and dendrites. Proc. Natl. Acad. Sci. U.S.A. 93: 9223–9228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Culvenor JG, Maher F, Evin G, et al. (1997) Alzheimer’s disease-associated presenilin 1 in neuronal cells: Evidence for localization to the endoplasmic reticulum-Golgi intermediate compartment. J. Neurosci. Res. 49: 719–731.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou J, Liyangage U, Medina M, et al. (1997) Presenilin-1 interaction in the brain with a novel member of the armadillo family. Neuroreport 8: 1489–1494.

    Article  CAS  PubMed  Google Scholar 

  62. Uchida N, Honjo Y, Johnson KR, Wheelock MJ, Takeichi M. (1996) The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J. Cell Biol. 135: 767–779.

    Article  CAS  PubMed  Google Scholar 

  63. Beher D, Elle C, Underwood J, et al. (1999) Proteolytic fragments of Alzheimer’s disease-associated presenilin 1 are present in synaptic organelles and growth cone membranes of rat brain. J. Neurochem. 72: 1564–1573.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Medical Research Council of Canada (P. E. F., P. St. G.-H.), Alzheimer Association of Ontario (P. E. F., P. St. G.-H.), EJLB Foundation (P. St. G.-H.), Howard Hughes Medical Research Foundation (P. St. G.-H.) and the Scottish Rite Charitable Foundation (P. E. F., P. St. G.-H.). Support was also provided from National Institutes of Health grants AG09464, AG10491, AG11508, and AG13780 (S. G.); AG10916 (R. A. N.) and The New York State Office of Mental Health (S. G.). Funding from the K.U. Leuven, the Fund for Scientific Research (Flanders), the Flemish Institute for Biotechnology and the VLAB/iWT is greatly acknowledged (F. V. L., B. D. S., W. A.). B. D. S. is a group leader and W. A. is a postdoctoral scientist of the Fund for Scientific Research (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Fraser Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lévesque, L., Annaert, W., Craessaerts, K. et al. Developmental Expression of Wild-Type and Mutant Presenilin-1 in Hippocampal Neurons from Transgenic Mice: Evidence for Novel Species-Specific Properties of Human Presenilin-1. Mol Med 5, 542–554 (1999). https://doi.org/10.1007/BF03401981

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401981

Keywords

Navigation