Skip to main content

Advertisement

Log in

T-Cell Epitopes in Type 1 Diabetes Autoantigen Tyrosine Phosphatase IA-2: Potential for Mimicry with Rotavirus and Other Environmental Agents

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

The tyrosine phosphatase IA-2 is a molecular target of pancreatic islet autoimmunity in type 1 diabetes. T-cell epitope peptides in autoantigens have potential diagnostic and therapeutic applications, and they may hold clues to environmental agents with similar sequences that could trigger or exacerbate autoimmune disease. We identified 13 epitope peptides in IA-2 by measuring peripheral blood T-cell proliferation to 68 overlapping, synthetic peptides encompassing the intracytoplasmic domain of IA-2 in six at-risk type 1 diabetes relatives selected for HLA susceptibility haplotypes.

The dorninant epitope, VTVMLTPLVEDGVKQC (aa 805–820), which elicited the highest T-cell responses in all at-risk relatives, has 56% identity and 100% similarity over 9 amino acids (aa) with a sequence in VP7, a major immunogenic protein of human rotavirus. Both peptides bind to HLA-DR4(*0401) and are deduced to present identical aa to the T-cell receptor. The contiguous sequence of VP7 has 75% identity and 92% similarity over 12 aa with a known T-cell epitope in glutamic acid decarboxylase (GAD), another autoantigen in type 1 diabetes. This dominant IA-2 epitope peptide also has 75–45% identity and 88–64% similarity over 8–14 aa to sequences in Dengue, cytomegalovirus, measles, hepatitis C, and canine distemper viruses, and the bacterium Haemophilus influenzae. Three other IA-2 epitope peptides are 71–100% similar over 7–12 aa to herpes, rhino-, hanta- and flaviviruses. Two others are 80–82% similar over 10–11 aa to sequences in milk, wheat, and bean proteins. Further studies should now be carried out to directly test the hypothesis that T-cell activation by rotavirus and possibly other viruses, and dietary proteins, could trigger or exacerbate β-cell autoimmunity through molecular mimicry with IA-2 and (for rotavirus) GAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table 1
Table 2

Similar content being viewed by others

References

  1. Rabin DU, Pleasic SM, Shapiro JA, et al. (1994) Islet cell antigen 512 is a diabetes-specific islet autoantigen related to tyrosine phosphatases. J. Immunol. 152: 3183–3188.

    PubMed  CAS  Google Scholar 

  2. Lan MS, Lu J, Goto Y, Notkins AL. (1994) Molecular cloning and identification of a receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. DNA Cell Biol. 13: 505–514.

    Article  CAS  PubMed  Google Scholar 

  3. Solimena M, Dirkx R, Hermel JM, et al. (1996) ICA512, an autoantigen of type I diabetes, is an intrinsic membrane protein of neurosecretory granules. EMBO J. 15: 2102–2114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bonifacio E, Lampasona V, Genovese S, Ferrari M, Bosi E. (1995) Identification of protein tyrosine phosphatase-like IA-2 (islet cell antigen 512) as the insulin-dependent diabetes-related 37/40K autoantigen and a target of islet-cell antibodies. J. Immunol. 155: 5419–5426.

    PubMed  CAS  Google Scholar 

  5. Cui L, Wei-Ping Y, deAizpurua HJ, Schmidli RS, Pallen CJ. (1996) Cloning and characterization of islet cell antigen-related protein-tyrosine phosphatase (FTP), a novel receptor-like FTP and autoantigen in insulin-dependent diabetes. J. Biol. Chem. 271: 24817–24823.

    Article  CAS  PubMed  Google Scholar 

  6. Notkins AL, Lu J, Qing L, et al. (1996) IA-2 and IA-2 β are major autoantigens in type 1 diabetes and the precursors of the 40 kDa and 37 kDa tryptic fragments. J. Autoimmun. 9: 677–672.

    Article  CAS  PubMed  Google Scholar 

  7. Hawkes CJ, Wasmeier C, Christie MR, Hutton JC. (1996) Identification of the 37-kDa antigen in type 1 diabetes as a tyrosine phosphatase-like protein (phogrin) related to IA-2. Diabetes 45: 1187–1192.

    Article  CAS  PubMed  Google Scholar 

  8. Schmidli RS, Colman PG, Cui L, et al. (1998) Antibodies to the novel protein tyrosine phosphatase IAR predict development of insulin-dependent diabetes mellitus (IDDM) in first-degree relatives at-risk for IDDM. Autoimmunity (in press).

  9. Durinovic-Bello I, Hummel M, Ziegler AG. (1996) Cellular immune responses to diverse islet cell antigens in type 1 diabetes. Diabetes 45: 795–800.

    Article  CAS  PubMed  Google Scholar 

  10. Hammer J, Bono E, Gallazzi F, Belunis C, Nagy Z, Sinigaglia F. (1994) Precise prediction of MHC class II-peptide interaction based on peptide side-chain scanning. J. Exp. Med. 180: 2353–2358.

    Article  CAS  PubMed  Google Scholar 

  11. Brusic V, Rudy G, Honeyman MC, Hammer J, Harrison LC. (1998) Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 14: 1–9.

    Article  Google Scholar 

  12. Sinigaglia F, Romagnoli P, Guttinger M, Takacs B, Pink JRL. (1991) Selection of T-cell epitopes and vaccine engineering. Methods Enzymol. 203: 370–386.

    Article  CAS  PubMed  Google Scholar 

  13. Harrison LC, Honeyman MC, Trembleau S, et al. (1997) A peptide-binding motif for I-Ag7, the class II major histocompatibility complex (MHC) molecule of NOD and Biozzi AB/H mice. J. Exp. Med. 185: 1013–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jones DB, Crosby I. (1996) Proliferative lymphocyte responses to virus antigens homologous to GAD65 in type 1 diabetes. Diabetologia 39: 1318–1324.

    Article  CAS  PubMed  Google Scholar 

  15. Rudy G, Stone N, Harrison L, et al. (1995) Similar peptides from two β-cell autoantigens, proinsulin and GAD, stimulate T cells of individuals at risk for IDDM. Mol. Med. 1: 625–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Van Eden W, Anderton SM, Van der Zee R, Prakken BJ, Broeren CP, Wauben MH. (1996) (Altered) self peptides and the regulation of self-reactivity in the peripheral T-cell pool. Immunol Rev. 149: 55–73.

    Article  PubMed  Google Scholar 

  17. Schloot NC, Roep BO, Wegmann DR, Yu L, Wang TB, Eisenbarth GS. (1997) T-cell reactivity to GAD65 peptide sequences shared with Coxsackie virus protein in recent-onset type 1 diabetes, postonset type 1 diabetes patients and control subjects. Diabetologia 40: 332–338.

    Article  CAS  PubMed  Google Scholar 

  18. Kumar D, Gemayel NS, Deapen D, et al. (1993) North-American twins with type 1 diabetes. Genetic, etiological, and clinical significance of disease concordance according to age, zygosity, and the interval after diagnosis of the first twin. Diabetes 42: 1351–1363.

    Article  CAS  PubMed  Google Scholar 

  19. Yoon JW, Austin M, Onodera T, Notkins AL. (1979) Virus-induced diabetes mellitus. Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N. Engl. J. Med. 300: 1173–1179.

    Article  CAS  PubMed  Google Scholar 

  20. Forrest JM, Menser MA, Burgess JA. (1971) High frequency of diabetes mellitus in young adults with congenital rubella. Lancet2(720): 332–334.

    Article  CAS  PubMed  Google Scholar 

  21. Karam JH, Lewitt PA, Young CW. (1980) Insulinopenic diabetes after rodenticide (Vacor) ingestion. A unique model of acquired diabetes in man. Diabetes 29: 971–978.

    Article  CAS  PubMed  Google Scholar 

  22. Foulis AK, McGill M, Farquharson MA, Hilton DA. (1997) A search for evidence of viral infection in pancreases of newly diagnosed patients with type 1 diabetes. Diabetologia 40: 53–61.

    Article  CAS  PubMed  Google Scholar 

  23. Harrison LC, McColl G. (1998) Infection and autoimmune disease. In: The Autoimmune Diseases, 2nd ed. Rose NR, Mackay IR (eds). Academic Press, San Diego, pp. 127–140.

    Google Scholar 

  24. Atkinson MA, Bowman MA, Campbell L, Darrow BL, Kaufman DL, Maclaren NK. (1994) Cellular immunity to a determinant common to glutamate decarboxylase and Coxsackie virus in insulin-dependent diabetes mellitus. J. Clin. Invest. 94: 2125–2129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tian J, Lehmann PV, Kaufman DL. (1994) T cell cross-reactivity between coxsackievirus and glutamic acid decarboxylase is associated with a murine diabetes susceptibility allele. J. Exp. Med. 180: 1979–1984.

    Article  CAS  PubMed  Google Scholar 

  26. Ohashi P, Oehen S, Buerki K, et al. (1991) Ablation of“tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65: 305–317.

    Article  CAS  PubMed  Google Scholar 

  27. Oldstone MBA, Nerenberg M, Southern P, Price J, Lewicki H. (1991) Virus infection triggers insulindependent diabetes mellitus in a transgenic model: Role of anti-self (virus) immune response. Cell 65: 319–331.

    Article  CAS  PubMed  Google Scholar 

  28. Hyoty H, Hiltunen M, Knip M, et al. Akerblom HK and Childhood Diabetes in Finland (DiMe) Study Group. (1995) A prospective study of the role of Coxsackie B and other enterovirus infections in the pathogenesis of type 1 diabetes. Diabetes 44: 652–657.

    Article  CAS  PubMed  Google Scholar 

  29. Brusic V, Rudy G, Kyne AP, Harrison LC. (1996) MHCPEP—a database of MHC-binding peptides: Update 1995. Nucl. Acids Res. 24: 242–244.

    Article  CAS  PubMed  Google Scholar 

  30. Patel SD, Cope AP, Congia M, et al. (1997) Identification of immunodominant T cell epitopes of human glutamic acid decarboxylase 65 by using HLA-DR(A1 *0101, B 1 *0401) transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 94: 8082–8087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heath R, Stagg S, Xu F, McCrae MA. (1997) Mapping of the target antigens of the rotavirus-specific cytotoxic T-cell response. J. Gen. Virol. 78: 1065–1075.

    Article  CAS  PubMed  Google Scholar 

  32. Verge CF, Howard NJ, Irwig L, Simpson JM, Mackerras D, Silink M. (1994) Environmental factors in childhood IDDM. A population-based, case-control study. Diabetes Care 17: 1381–1389.

    Article  CAS  PubMed  Google Scholar 

  33. Bishop RF, Unicomb LE, Barnes GL. (1991) Epidemiology of rotavirus serotypes in Melbourne, Australia, from 1973 to 1989. J. Clin. Microbiol. 29: 862–868.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Rott LS, Rose JR, Bass D, Williams MB, Greenberg HB, Butcher EC. (1997) Expression of mucosal homing receptor α4β7 by circulating CD4+ cells with memory for intestinal rotavirus. J. Clin. Invest. 100: 1204–1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Paronen J, Klemetti P, Kantele JM, et al. (1997) Glutamate decarboxylase-reactive peripheral blood lymphocytes from patients with IDDM express gut-specific homing receptor α4β7-integrin. Diabetes 46: 583–588.

    Article  CAS  PubMed  Google Scholar 

  36. Hanninen A, Salmi M, Simell O, Jalkanen S. (1996) Mucosa-associated (beta 7-integrin high) lymphocytes accumulate early in the pancreas of NOD mice and show aberrant recirculation behaviour. Diabetes 45: 1173–1180.

    Article  CAS  PubMed  Google Scholar 

  37. Harrison LC. (1996) Cows’ milk and type 1 diabetes [Commentary]. Lancet 348: 905–906.

    Article  CAS  PubMed  Google Scholar 

  38. Cavallo MG, Fava D, Monetini L, Barone F, Pozzilli P. (1996) Cell-mediated immune response to beta casein in recent-onset insulin-dependent diabetes: Implications for disease pathogenesis. Lancet 348: 926–928.

    Article  CAS  PubMed  Google Scholar 

  39. Hoorfar J, Buschard K, Dagnaes-Hansen F. (1993) Prophylactic nutritional modification of the incidence of diabetes in autoimmune nonobese diabetic (NOD) mice. Br. J. Nutrition 69: 597–607.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the volunteers for their generous blood donations, and to Dr. Barbara Coul-son and Mr. Vladimir Brusic for helpful discussions. Dr. Brian Tait for tissue typing. Dr. Robert Schmidli and Dr. Peter Colman for autoantibody assays, and Mrs. Margaret Thompson for secretarial assistance. N.L.S. is supported by Vic Health, M.C.H. and L.C.H. by the National Health &Medical Research Council of Australia and The Angelo and Susan Alberti Program Project Grant from the Juvenile Diabetes Foundation International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margo C. Honeyman.

Additional information

Communicated by L. C. Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honeyman, M.C., Stone, N.L. & Harrison, L.C. T-Cell Epitopes in Type 1 Diabetes Autoantigen Tyrosine Phosphatase IA-2: Potential for Mimicry with Rotavirus and Other Environmental Agents. Mol Med 4, 231–239 (1998). https://doi.org/10.1007/BF03401920

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401920

Keywords

Navigation