Skip to main content

Advertisement

Log in

Imbalanced Distribution of Plasmodium falciparum MSP-1 Genotypes Related to Sickle-Cell Trait

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

The sickle-cell trait protects against severe Plasmodium falciparum malaria and reduces susceptibility to mild malaria but does not prevent infection. The exact mechanism of this protection remains unclear. We have hypothesized that AS individuals are protected by virtue of being less susceptible to a subset of parasite strains; thus we compared some genetic characteristics of parasites infecting AS and AA subjects.

Materials and Methods

Blood was collected from asymptomatic individuals living in two different regions of Africa. The polymorphic MSP-1 and MSP-2 loci were genotyped using a PCR-based methodology. Individual alleles were identified by size polymorphism, amplification using family-specific primers, and hybridization using family-specific probes. Multivariate logistic regression was used to analyze allele distribution.

Results

In Senegalese carriers, age and hemoglobin type influenced differently the distribution of the three MSP-1 families and had an impact on distinct individual alleles, whereas the distribution of MSP-2 alleles was marginally affected. There was no influence of other genetic traits, including the HLA Bw53 genotype, or factors such as place of residence within the village. In a cohort of Gabonese schoolchildren in which the influence of age was abrogated, a similar imbalance in the MSP-1 allelic distribution but not of MSP-2 allelic distribution by hemoglobin type was observed.

Conclusions

The influence of the host’s hemoglobin type on P. falciparum genotypes suggests that parasite fitness for a specific host is strain-dependent, which is consistent with our hypothesis that innate resistance might result from reduced fitness of some parasite strains for individuals with sickle-cell traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allison AC. (1954) The distribution of the sickle-cell trait in East Africa and elsewhere, and its apparent relationship to the incidence of subtertian malaria. Trans. R. Soc. Trop. Med. Hyg. 48: 312–318.

    Article  CAS  PubMed  Google Scholar 

  2. Miller L. (1994) Impact of malaria on genetic polymorphism and genetic diseases in Africans and African Americans. Proc. Natl. Acad. Sci. U.S.A. 91: 2415–2419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fleming AF, Storey J, Molineaux L, Iroko EA, Attai EDE. (1979) Abnormal haemoglobins in the Sudan savanna of Nigeria. I. Prevalence of haemoglobins and relationship between sickle cell trait, malaria and survival. Ann. Trop. Med. Parasitol. 73: 161–172.

    Article  CAS  PubMed  Google Scholar 

  4. Hill AVS, Allsopp CEM, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennett S, Brewster D, McMichael AJ, Greenwood BM. (1991) Common West African HLA antigens are associated with protection from severe malaria. Nature 352: 595–600.

    Article  CAS  PubMed  Google Scholar 

  5. Chippaux J-P, Massougbodji A, Boulard J-C, Akogbeto M. (1992) Etude de la morbidité palustre et de la gravité des accès pernicieux chez les porteurs du trait drépanocytaire. Rev. Epidémiol. Santé Publ. 40: 240–245.

    CAS  Google Scholar 

  6. Chippaux J-P, Massougbodji A, Castel J, Akogbeto M, Zohoun I, Zohoun T. (1992) Parasitémies à Plasmodium falciparum ou P. malariae chez les porteurs du trait drépanocytaire dans différents biotopes du Bénin. Rev. Epidemiol Sante Puhl 40: 246–251.

    CAS  Google Scholar 

  7. Bayoumi RA, Abu-Zeid YA, Abdulhadi NH, Saeed BO, Theander TG, Hviid L, Ghalid HW, Nugud HD, Jepsen S, Jensen JB. (1990) Cell-mediated immune responses to Plasmodium falciparum purified soluble antigens in sickle-cell traits subjects. Immunol. Lett. 25: 243–250.

    Article  CAS  PubMed  Google Scholar 

  8. Abu-Zeid YA, Abdulhadi NH, Hviid L, Theander TG, Saeed BO, Jepsen S, Bayoumi RA. (1991) Lymphoproliferative responses to Plasmodium falciparum antigens in children with and without the sickle cell trait. Scand. J. Immunol. 34: 237–242.

    Article  CAS  PubMed  Google Scholar 

  9. Friedman MJ. (1978) Erythrocytic mechanism of sickle cell resistance to malaria. Proc. Natl. Acad. Sci. U.S.A. 75: 1994–1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pasvol G, Weatherall DJ, Wilson RJM. (1978) Cellular mechanism for the protective effect of haemoglobin S against P. falciparum malaria. Nature 274: 701–703.

    Article  CAS  PubMed  Google Scholar 

  11. Roth EF, Friedman M, Uead Y, Tellze I, Trager W, Nagel RL. (1978) Sickling rates of human AS red cells infected in vitro with Plasmodium falciparum malaria. Science 202: 650–652.

    Article  PubMed  Google Scholar 

  12. Mozzarelli A, Hofrichter J, Eaton WA. (1987) Delay time of hemoglobin S polymerization prevents most cells from sickling in vivo. Science 237: 500–506.

    PubMed  CAS  Google Scholar 

  13. Rogier C, Commenges D, Trape J-F. (1996) Evidence for an age-dependent pyrogenic threshold of Plasmodium falciparum parasitemia in highly endemic populations. Am. J. Trop. Med. Hyg. 54: 613–619.

    Article  CAS  PubMed  Google Scholar 

  14. Marsh K, Otoo L, Hayes RJ, Carson DC, Greenwood BM. (1989) Antibodies to blood stage antigens of Plasmodium falciparum in rural Gambians and their relation to protection against infection. Trans. R. Soc. Trop. Med. Hyg. 83: 293–303.

    Article  CAS  PubMed  Google Scholar 

  15. Allison AC. (1954) Protection afforded by sickle-cell trait against sub-tertian malarial infection. Br. Med. J. 1: 290–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fandeur T, Mercereau-Puijalon O, Bonnemains B. (1996) Plasmodium falciparum: Genetic diversity of several strains infectious for the squirrel monkey (Saimiri sciureus). Exp. Parasitol. 84: 1–15.

    Article  CAS  PubMed  Google Scholar 

  17. Cooper JA. (1993) Merozoite surface antigen-1 of Plasmodium. Parasitol. Today 9: 50–54.

    CAS  Google Scholar 

  18. Fenton B, Clark JT, Khan CMA, Robinson JV, Walliker D, Ridley R, Scaife JG, McBride JS. (1991) Structural and antigenic polymorphism of the 35- to 48-kilodalton merozoite surface antigen (MSA-2) of the malaria parasite Plasmodium falciparum. Mol. Cell. Biol. 11: 963–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller LH, Roberts T, Shahabuddin M, McCutchan TF. (1993) Analysis of sequence diversity in the Plasmodium falciparum merozoite surface protein-1 (MSP-1). Mol. Biochem. Parasitol. 59: 1–14.

    Article  CAS  PubMed  Google Scholar 

  20. Snewin VA, Herrera M, Sanchez G, Scherf A, Langsley G, Herrera S. (1991) Polymorphism of the alleles of the merozoite surface antigens MSA1 and MSA2 in Plasmodium falciparum wild isolates from Colombia. Mol. Biochem. Parasitol. 49: 265–276.

    Article  CAS  PubMed  Google Scholar 

  21. Prescott N, Stowers AW, Cheng Q, Bobogare A, Rzepczyk CM, Saul A. (1994) Plasmodium falciparum genetic diversity can be characterized using the polymorphic merozoite surface antigen 2 (MSA-2) gene as a single locus marker. Mol. Biochem. Parasitol. 63: 203–212.

    Article  CAS  PubMed  Google Scholar 

  22. Viriyakosol S, Siripon N, Petcharapirat C, Petcharapirat P, Jarra W, Thaithong S, Brown KN, Snounou G. (1995) Genotyping of Plasmodium falciparum isolates by the polymerase chain reaction and potential uses in epidemiological studies. Bull WHO 73: 85–95.

    PubMed  CAS  Google Scholar 

  23. Contamin H, Fandeur T, Bonnefoy S, Skouri F, Ntoumi F, Mercereau-Puijalon O. (1995) PCR typing of field isolates of Plasmodium falciparum. J. Clin. Microbiol. 33: 944–951.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Ntoumi F, Contamin H, Rogier C, Bonnefoy S, Trape J-F, Mercereau-Puijalon O. (1995) Age-dependent carriage of multiple Plasmodium falciparum merozoite surface antigen-2 alleles in asymptomatic malaria infections. Am. J. Trop. Med. Hyg. 52: 81–88.

    Article  CAS  PubMed  Google Scholar 

  25. Robert F, Ntoumi F, Angel G, Diatta B, Rogier C, Fandeur T, Sarthou J-L, Mercereau-Puijalon O. (1996) Extensive genetic diversity of Plasmodium falciparum isolates collected from patients with severe malaria in Dakar, Sénégal. Trans. R. Soc. Trop. Med. Hyg. 90: 704–711.

    Article  CAS  PubMed  Google Scholar 

  26. Trape J-F, Rogier C, Konate L, Diagne N, Bouganali H, Canque B, Legros F, Badji A, Ndiaye G, Ndiaye P, Brahimi K, Faye O, Druilhe P, Pereira da Silva L. (1994) The Dielmo project: A longitudinal study of natural malaria infection and the mechanisms of protective immunity in a community living 592 in a holoendemic area of Senegal. Am. J. Trop. Med. Hyg. 51: 123–137.

    Article  CAS  PubMed  Google Scholar 

  27. Luty AJF, Mayombo J, Lekoulou F, Mshana R. (1994) Immunologic responses to soluble exoantigens of Plasmodium falciparum in Gabonese children exposed to continuous intense infection. Am. J. Trop. Med. Hyg. 51: 720–729.

    Article  CAS  PubMed  Google Scholar 

  28. Dieye A, Diaw ML, Rogier C, Trape J-F, Sarthou J-L. (1996) HLA-A, -B, -C, -DR, -DQ typing in a population group of Senegal: Distribution of HLA antigens and HLA-DRB1*13 and DRB1*11 subtyping by PCR using sequence-specific primers (PCR-SSP). Tissue Antigens 47: 194–199.

    Article  CAS  PubMed  Google Scholar 

  29. O’Quigley J, Schwartz D. (1986) The comparison of several proportions in the presence of low cell expectations. Rev. Epidémiol. Santé Publ. 34: 18–22.

    Google Scholar 

  30. Fleiss J. (1981) Statistical Methods for Rates and Proportions. John Wiley & Sons, New York, pp. 225–233.

    Google Scholar 

  31. Stiratelli R, Laird NM, Ware JH. (1984) Random-effects models for serial observations with binary response. Biometrics 40: 961–971.

    Article  CAS  PubMed  Google Scholar 

  32. Trape J-F, Rogier C. (1996) Combating malaria morbidity and mortality by reducing transmission. Parasitol. Today 12: 236–240.

    Article  CAS  PubMed  Google Scholar 

  33. Barrie Wetherill G. (1981) Intermediate Statistical Methods. Chapman and Hall, New York, pp. 254–255.

    Google Scholar 

  34. Creasey A, Fenton B, Walker A, Thaitong S, Oliveira S, Mutambu S, Walliker D. (1990) Genetic diversity of Plasmodium falciparum shows geographical variation. Am. J. Trop. Med. Hyg. 42: 403–413.

    Article  CAS  PubMed  Google Scholar 

  35. Cox FEG. (1988) Major animal models in malaria research: Rodent. In: Wernsdorfer WH McGregor I (eds). Malaria: Principles and Practice of Malariology. Churchill Livingstone, London, pp. 1503–1543.

    Google Scholar 

  36. Luzzatto L. (1979) Genetics of red cells and susceptibility to malaria. Blood 54: 961–976.

    PubMed  CAS  Google Scholar 

  37. Robert V, Tchuinkam T, Mulder B, Bodo J-M, Verhave J-P, Carnevale P, Nagel RL. (1996) Effect of the sickle cell trait status of gametocyte carriers of Plasmodium falciparum on infectivity to Anophelines. Am. J. Trop. Med. Hyg. 54: 111–113.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Dielmo villagers, the schoolchildren of Dienga, and their parents, who generously accepted to participate in this study. We are indebted to Gora Ndiaye, Charles Bouganali, Assane Badji, and Adrian Luty for collection of blood samples in Dielmo and Dienga, respectively. We also thank Badara Cisse and Adama Tall, Jean-Louis Sarthou, and Christian Roussilhon for expert assistance and Pierre Druilhe and Luiz Pereira da Silva for their invaluable input in the Dielmo program. We thank the Dienga school staff and Yakhya Dieye, Justice Mayomobo, Fautin Lekoulou, Paul Tshipamba, and Hélène Tiga for technical assistance. Particular thanks are due to Trinh Ngoe Minh for his help in the statistical analysis of the Dienga data and to André Spiegel for helpful advice in the statistical analysis of the Dielmo data. Part of this work was done when Francine Ntoumi was a fellow of the UNDP, World Bank, WHO Special Program for Research and Training in Tropical Diseases. The Dielmo work was funded by a grant from the Ministère de la Coopération. The work in Gabon was funded by grants from the Gabonese government, ELF Gabon, the Ministère de la Coopération, and INSERM. We thank Françoise Guinet, Peter David, Charlotte Behr, Florence Robert, and Jean-Louis Pérignon for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odile Mercereau-Puijalon.

Additional information

Communicated by L. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ntoumi, F., Rogier, C., Dieye, A. et al. Imbalanced Distribution of Plasmodium falciparum MSP-1 Genotypes Related to Sickle-Cell Trait. Mol Med 3, 581–592 (1997). https://doi.org/10.1007/BF03401815

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401815

Keywords

Navigation