Skip to main content

Advertisement

Log in

Induction of Antigen-Specific Tumor Immunity by Genetic and Cellular Vaccines against MAGE: Enhanced Tumor Protection by Coexpression of Granulocyte-Macrophage Colony-Stimulating Factor and B7-1

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

A number of tumors express antigens that are recognized by specific cytotoxic T cells. The normal host immune responses, however, are not usually sufficient to cause tumor rejection. Using appropriate immunization strategies, tumor-specific antigens may serve as targets against which tumor-destructive immune responses can be generated. MAGE-1 and MAGE-3 are two clinically relevant antigens expressed in many human melanomas and other tumors, but not in normal tissues, except testis. Here, we have investigated whether DNA and cellular vaccines against MAGE-1 and MAGE-3 can induce antigen-specific anti-tumor immunity and cause rejection of MAGE-expressing tumors.

Materials and Methods

Mice were immunized against MAGE-1 and MAGE-3 by subcutaneous injection of genetically modified embryonic fibroblasts or intramuscular injection of purified DNA. Mice were injected with lethal doses of B16 melanoma cells expressing the corresponding MAGE antigens or the unrelated protein SIV tat, and tumor development and survival were monitored.

Results

Intramuscular expression of MAGE-1 and MAGE-3 by plasmid DNA injection and subcutaneous immunization with syngeneic mouse embryonic fibroblasts transduced with recombinant retroviruses to express these antigens induced specific immunity against tumors expressing MAGE-1 and MAGE-3. Both CD4+ and CD8+ T cells were required for anti-tumor immunity. Coexpression of granulocyte-macrophage colony-stimulating factor (GM-CSF) or B7-1 significantly increased anti-tumor immunity in an antigen-specific manner and resulted in a considerable proportion of mice surviving lethal tumor challenge.

Conclusions

Our results suggest that genetic and cellular vaccines against MAGE and other tumor antigens may be useful for the therapy of tumors expressing specific markers, and that GM-CSF and B7-1 are potent stimulators for the induction of antigen-specific tumor immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bakker AB, Schreurs MW, de Boer AJ, et al. (1994). Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J. Exp. Med. 179: 1005–1009.

    Article  CAS  PubMed  Google Scholar 

  2. Boel P, Wildmann C, Sensi ML, et al. (1995). BAGE: A new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity 2: 167–175.

    Article  CAS  PubMed  Google Scholar 

  3. Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A. (1994). Tumor antigens recognized by T lymphocytes. Annu. Rev. Immunol. 12: 337–365.

    Article  CAS  PubMed  Google Scholar 

  4. Brichard V, Van Pel A, Wolfel T, et al. (1993). The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med. 178: 489–495.

    Article  CAS  PubMed  Google Scholar 

  5. Castelli C, Storkus WJ, Maeurer MJ, et al. (1995). Mass spectrometric identification of a naturally processed melanoma peptide recognized by CD8+ cytotoxic T lymphocytes. J. Exp. Med. 181: 363–368.

    Article  CAS  PubMed  Google Scholar 

  6. Cox AL, Skipper J, Chen Y, et al. (1994). Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 264: 716–719.

    Article  CAS  PubMed  Google Scholar 

  7. Gaugier B, Van den Eynde B, van der Bruggen P, et al. (1994). Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J. Exp. Med. 179: 921–930.

    Article  Google Scholar 

  8. Kawakami Y, Eliyahu S, Delgado CH, et al. (1994). Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc. Natl. Acad. Sci. U.S.A. 91: 3515–3519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van den Eynde B, Peeters O, De Backer O, Gaugier B, Lucas S, Boon T. (1995). A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma. J. Exp. Med. 182: 689–698.

    Article  PubMed  Google Scholar 

  10. van der Bruggen P, Traversari C, Chomez P, et al. (1991). A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254: 1643–1647.

    Article  PubMed  Google Scholar 

  11. De Plaen E, Arden K, Traversari C, et al. (1994). Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics 40: 360–369.

    Article  CAS  PubMed  Google Scholar 

  12. Muscatelli F, Walker AP, De Plaen E, Stafford AN, Monaco AP. (1995). Isolation and characterization of a MAGE gene family in the Xp21.3 region. Proc. Natl. Acad. Sci. U.S.A. 92: 4987–4991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Patard JJ, Brasseur F, Gil-Diez S, et al. (1995). Expression of MAGE genes in transitional-cell carcinomas of the urinary bladder. Int. J. Cancer 64: 60–64.

    Article  CAS  PubMed  Google Scholar 

  14. Russo V, Traversari C, Verrecchia A, Mottolese M, Natali PG, Bordignon C. (1995). Expression of the MAGE gene family in primary and metastatic human breast cancer: Implications for tumor antigen-specific immunotherapy. Int. J. Cancer 64: 216–221.

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi K, Shichijo S, Noguchi M, Hirohata M, Itoh K. (1995). Identification of MAGE-1 and MAGE-4 proteins in spermatogonia and primary spermatocytes of testis. Cancer Res. 55: 3478–3482.

    PubMed  CAS  Google Scholar 

  16. Amar-Costesec A, Godelaine D, Stockert E, van der Bruggen P, Beaufay H, Chen YT. (1994). The tumor protein MAGE-1 is located in the cytosol of human melanoma cells. Biochem. Biophys. Res. Commun. 204: 710–715.

    Article  CAS  PubMed  Google Scholar 

  17. Kocher T, Schultz-Thater E, Gudat F, et al. (1995). Identification and intracellular location of MAGE-3 gene product. Cancer Res. 55: 2236–2239.

    PubMed  CAS  Google Scholar 

  18. Schultz-Thater E, Juretic A, Dellabona P, et al. (1994). MAGE-1 gene product is a cytoplasmic protein. Int. J. Cancer 59: 435–439.

    Article  CAS  PubMed  Google Scholar 

  19. Traversari C, van der Bruggen P, Luescher IF, et al. (1992). A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J. Exp. Med. 176: 1453–1457.

    Article  CAS  PubMed  Google Scholar 

  20. van der Bruggen P, Bastin J, Gajewski T, et al. (1994). A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. Eur. J. Immunol 24: 3038–3043.

    Article  PubMed  Google Scholar 

  21. van der Bruggen P, Szikora JP, Boel P, et al. (1994). Autologous cytolytic T lymphocytes recognize a MAGE-1 nonapeptide on melanomas expressing HLA-Cw*1601. Eur. J. Immunol 24: 2134–2140.

    Article  PubMed  Google Scholar 

  22. Hoon DS, Yuzuki D, Hayashida M, Morton DL. (1995). Melanoma patients immunized with melanoma cell vaccine induce antibody responses to recombinant MAGE-1 antigen. J. Immunol 154: 730–737.

    PubMed  CAS  Google Scholar 

  23. Mukherji B, Chakraborty NG, Yamasaki S, et al. (1995). Induction of antigen-specific cytolytic T cells in situ in human melanoma by immunization with synthetic peptide-pulsed autologous antigen presenting cells. Proc. Natl Acad. Sci. U.S.A. 92: 8078–8082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salgaller ML, Weber JS, Koenig S, Yannelli JR, Rosenberg SA. (1994). Generation of specific anti-melanoma reactivity by stimulation of human tumor-infiltrating lymphocytes with MAGE-1 synthetic peptide. Cancer Immunol Immunother. 39: 105–116.

    Article  CAS  PubMed  Google Scholar 

  25. Dranoff G, Jaffee E, Lazenby A, et al. (1993). Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting antitumor immunity. Proc. Natl Acad. Sci. U.S.A. 90: 3539–3543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Riviere I, Brose K, Mulligan RC. (1995). Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells. Proc. Natl Acad. Sci. U.S.A. 92: 6733–6737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miller AD. (1990). Retrovirus packaging cells. Hum. Gene Ther. 1: 5–14.

    Article  CAS  PubMed  Google Scholar 

  28. Danos O, Mulligan RC. (1988). Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc. Natl Acad. Sci. U.S.A. 85: 6460–6464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rahemtulla A, Fung-Leung WP, Schilham MW, et al. (1991). Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nature 353: 180–184.

    Article  CAS  PubMed  Google Scholar 

  30. Fung-Leung WP, Schilham MW, Rahemtulla A, et al. (1991). CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell 65: 443–449.

    Article  CAS  PubMed  Google Scholar 

  31. Tang DC, De Vit M, Johnston SA. (1992). Genetic immunization is a simple method for eliciting an immune response. Nature 356: 152–154.

    Article  CAS  PubMed  Google Scholar 

  32. Ulmer JB, Donnelly JJ, Parker SE, et al. (1993). Heterologous protection against influenza by injection of DNA encoding a viral protein [see comments]. Science 259: 1745–1749.

    Article  CAS  PubMed  Google Scholar 

  33. Conry RM, Lo Buglio AF, Loechel F, et al. (1995). A carcinoembryonic antigen polynucleotide vaccine has in vivo antitumor activity. Gene Ther. 2: 59–65.

    PubMed  CAS  Google Scholar 

  34. Wang B, Merva M, Dang K, Ugen KE, Williams WV, Weiner DB. (1995). Immunization by direct DNA inoculation induces rejection of tumor cell challenge. Hum. Gene Ther. 6: 407–418.

    Article  CAS  PubMed  Google Scholar 

  35. Major ME, Vitvitski L, Mink MA, et al. (1995). DNA-based immunization with chimeric vectors for the induction of immune responses against the hepatitis C virus nucleocapsid. J. Virol 69: 5798–5805.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Levitsky HI, Lazenby A, Hayashi RJ, Pardoll DM. (1994). In vivo priming of two distinct antitumor effector populations: the role of MHC class I expression. J. Exp. Med. 179: 1215–1224.

    Article  CAS  PubMed  Google Scholar 

  37. Inaba K, Inaba M, Romani N, et al. (1992). Generation of large numbers of dendritic 555 cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176: 1693–1702.

    Article  CAS  PubMed  Google Scholar 

  38. Guery JC, Adorini L. (1995). Dendritic cells are the most efficient in presenting endogenous naturally processed self-epitopes to class II-restricted T cells. J. Immunol. 154: 536–544.

    PubMed  CAS  Google Scholar 

  39. Steinman RM. (1991). The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9: 271–296.

    Article  CAS  PubMed  Google Scholar 

  40. Allison JP. (1994). CD28-B7 interactions in T-cell activation. Curr. Opin. Immunol. 6: 414–419.

    Article  CAS  PubMed  Google Scholar 

  41. Boon T, Coulie P, Marchand M, Weynants P, Wolfel T, Brichard V. (1994). Genes coding for tumor rejection antigens: perspectives for specific immunotherapy. In: DeVita VT, Hellmann S, Rosenberg SA (eds). Important Advances in Oncology. J.B. Lippincott Company: Philadelphia, pp. 53–69.

    Google Scholar 

  42. Repique CJ, Kettering JD, Gridley DS. (1992). Immunosuppression derived from human B-lymphoblastoid and melanoma cell lines. Cancer Invest. 10: 201–208.

    Article  CAS  PubMed  Google Scholar 

  43. Young MR, Wright MA, Coogan M, Young ME, Bagash J. (1992). Tumor-derived cytokines induce bone marrow suppressor cells that mediate immunosuppression through transforming growth factor beta. Cancer Immunol. Immunother. 35: 14–18.

    Article  CAS  PubMed  Google Scholar 

  44. Kuppner MC, Hamou MF, Bodmer S, Fontana A, de Tribolet N. (1988). The glioblas-toma-derived T-cell suppressor factor/transforming growth factor beta 2 inhibits the generation of lymphokine-activated killer (LAK) cells. Int. J. Cancer 42: 562–567.

    Article  CAS  PubMed  Google Scholar 

  45. Mizoguchi H, O’Shea JJ, Longo DL, Loeffler CM, McVicar DW, Ochoa AC. (1992). Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice [see comments]. Science 258: 1795–1798.

    Article  CAS  PubMed  Google Scholar 

  46. ×iang Z, Ertl HC. (1995). Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity 2: 129–135.

    Article  PubMed  Google Scholar 

  47. Baskar S, Ostrand-Rosenberg S, Nabavi N, Nadler LM, Freeman GJ, Glimcher LH. (1993). Constitutive expression of B7 restores immunogenicity of tumor cells expressing truncated major histocompatibility complex class II molecules. Proc. Natl. Acad. Sci. U.S.A. 90: 5687–5690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Townsend SE, Allison JP. (1993). Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 259: 368–370.

    Article  CAS  PubMed  Google Scholar 

  49. Hodge JW, McLaughlin JP, Abrams SI, Shupert WL, Schlom J, Kantor JA. (1995). Admixture of a recombinant vaccinia virus containing the gene for the costimulatory molecule B7 and a recombinant vaccinia virus containing a tumor-associated antigen gene results in enhanced specific T-cell responses and antitumor immunity. Cancer Res. 55: 3598–3603.

    PubMed  CAS  Google Scholar 

  50. Kuchroo VK, Das MP, Brown JA, et al. (1995). B7-1 and B7-2 costimulatory molecules activate differentially the Thl/Th2 developmental pathways: application to autoimmune disease therapy. Cell 80: 707–718.

    Article  CAS  PubMed  Google Scholar 

  51. Seder RA, Paul WE. (1994). Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu. Rev. Immunol. 12: 635–673.

    Article  CAS  PubMed  Google Scholar 

  52. Wu TC, Huang AY, Jaffee EM, Levitsky HI, Pardoll DM. (1995). A reassessment of the role of B7-1 expression in tumor rejection. J. Exp. Med. 182: 1415–1421.

    Article  CAS  PubMed  Google Scholar 

  53. Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H. (1994). Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264: 961–965.

    Article  CAS  PubMed  Google Scholar 

  54. Pardoll DM. (1994). Tumour antigens. A new look for the 1990s [news; comment]. Nature 369: 357.

    Article  CAS  PubMed  Google Scholar 

  55. zur Hausen H, and de Villiers EM. (1994). Human papillomaviruses. Annu. Rev. Microbiol. 48: 427–447.

    Article  PubMed  Google Scholar 

  56. Rubin SC, Finstad CL, Federici MG, Scheiner L, Lloyd KO, Hoskins WJ. (1994). Prevalence and significance of HER-2/neu expression in early epithelial ovarian cancer. Cancer 73: 1456–1459.

    Article  CAS  PubMed  Google Scholar 

  57. el-Shirbiny AM. (1994). Prostatic specific antigen. Adv. Clin. Chem. 31: 99–133.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank T. Boon for MAGE-1 and MAGE-3 complementary DNA clones and C. Gee for B16 tat cells. CD4−/− and CD8−/− mice were a kind gift of T. Mak. This work was supported by grants of the Schweizerische Nationalfonds (823A–037047) and the Roche Research Foundation (95–134) to HB and a grant of the National Cancer Institute (NCI CA63399) to RCM.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Büeler, H., Mulligan, R.C. Induction of Antigen-Specific Tumor Immunity by Genetic and Cellular Vaccines against MAGE: Enhanced Tumor Protection by Coexpression of Granulocyte-Macrophage Colony-Stimulating Factor and B7-1. Mol Med 2, 545–555 (1996). https://doi.org/10.1007/BF03401639

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401639

Navigation