Skip to main content
Log in

Growth hormone treatment in adults with GH deficiency: Effects on new biochemical markers of bone and collagen turnover

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Serum bone Gla protein (BGP) and bone alkaline phosphatase (B-AP), markers of bone formation, carboxyterminal cross-linked telopeptide of type I collagen (ICTP), marker of bone resorption, and aminoterminal propeptide of type III procollagen (PIIINP) levels, index of collagen synthesis, were determined in 8 adults (mean age±SE: 29.6±1.2 yr) with childhood onset GHD before and after 3 and 6 months of recombinant GH treatment (0.5 IU/kg/week). Before treatment, mean BGP (3.8±.5 ng/ml) and B-AP (44.9±6.9 IU/L) were significantly (p<0.001 and p<0.05, respectively) lower than those recorded in normals (5.4±0.1 ng/ml and 61.8+1.9 IU/L, respectively), while serum ICTP and PIIINP levels were similar to those found in controls (ICTP: 4.7±0.8 vs 4.1±0.3 ng/ml; PIIINP: 3.7±0.6 vs 3.2±0.2 ng/ml). BGP and ICTP levels significantly (p<0.005) increased after 3 (28.4±5.3 ng/ml and 17.5±2.8 ng/ml, respectively) and 6 months (25.1±5.0 ng/ml and 15.0±1.9 ng/ml, respectively) of recombinant GH treatment. B-AP levels significantly (p<0.01) increased during the treatment (basal: 44.9±6.9 IU/L, 3rd month: 173.6±40 IU/L, 6th month: 194.4±40 IU/L), while non B-AP levels remained similar to those recorded in basal condition. Serum PIIINP levels significantly (p<0.0001) rose up after 3 (12.5±1.4 ng/ml) and 6 months (10.2±0.8 ng/ml). Serum BGP and ICTP levels were directly (r=0.85, p<0.001; r=0.53, p<0.01) correlated with serum IGF-I levels. In conclusion, our study show that in adulthood GH deficiency seems to exert less relevant negative effects on bone and collagen turnover than those previously observed in childhood. Furthermore, GH treatment is able to reactivate the bone remodeling of adults with GH deficiency, probably through a local mediation of IGF-I. The long term effect of GH on bone mineral content remains to be established, since recombinant GH treatment increases both bone formation and bone resorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bouillon R. Growth hormone and bone. Horm. Res. 36: 49, 1991.

    Article  PubMed  Google Scholar 

  2. Frost H.M. Tetracycline-based histological analysis of bone remodelling. Calcif. Tissue Res. 3: 211, 1969.

    Article  CAS  PubMed  Google Scholar 

  3. Parfitt A.M. Bone remodelling: relationship to the amount and structure of bone and the pathogenesis and prevention of fracture. In: Riggs B.L., Melton III L.J. (Eds.), Osteoporosis: Etiology, Diagnosis and Management. Raven Press, New York, 1988, p. 45.

    Google Scholar 

  4. Parfitt A.M. Growth hormone and adult bone remodeling. Clin. Endocrinol. (Oxf.) 35: 467, 1991.

    Article  CAS  Google Scholar 

  5. Ernst M., Froesch E.R. Growth hormone dependent stimulation of osteoblast-like cells in serum-free cultures via local synthesis of insulin-like growth factor I. Biochem. Biophys. Res. Commun. 151: 142, 1988.

    Article  CAS  PubMed  Google Scholar 

  6. Brixen K., Nielsen H.K., Mosekilde L, Flyvbjerg A. A short course of recombinant human growth hormone treatment stimulates osteoblast and activates bone remodelling in normal human volunteers. J. Bone Min. Res. 5: 609, 1990.

    Article  CAS  Google Scholar 

  7. Ferrandez A., Zachmann M, Prader A., Illig R. Isolated growth hormone deficiency in prepubertal children: influence of human growth hormone on longitudinal growth, adipose tissue, bone mass and bone maturation. Helv. Paediatr. Acta. 6: 566, 1970.

    Google Scholar 

  8. Shore R.M., Chesney R.W., Mazess R.B., Rose P.G., Bargman G.J. Bone mineral status in growth hormone deficiency. J. Pediatr. 96: 393, 1980.

    Article  CAS  PubMed  Google Scholar 

  9. Johansen J.S., Giwercman A., Hartwell D., Nielsen C.T., Price P.A., Christiansen C., Skakkebaek N.E. Serum bone-GLA protein as a marker of bone growth in children and adolescents: correlation with age, height, serum insulin-like growth factor I and serum testosterone. J. Clin. Endocrinol. Metab. 67: 273, 1988.

    Article  CAS  PubMed  Google Scholar 

  10. Johansen J.S., Jensen S.B., Riis B.J., Rasmussen L., Zachmann M., Christiansen C. Serum bone Gla protein: a potential marker of growth hormone (GH) deficiency and the response to GH therapy. J. Clin. Endocrinol. Metab. 71: 122, 1990.

    Article  CAS  PubMed  Google Scholar 

  11. Sartorio A., Conti A., Guzzaloni G., Faglia G. Serum osteocalcin levels in patients with GH deficiency before and during GH treatment. Acta Paediatr. Scand. 80: 100, 1991.

    Article  CAS  PubMed  Google Scholar 

  12. Black M.M., Shuster S., Bottoms E. Skin collagen and thickness in acromegaly and hypopituitarism. Clin. Endocrinol. (Oxf.) 1: 259, 1972.

    Article  CAS  Google Scholar 

  13. Sartorio A., Conti A., Morabito F., Monzani M., FagliaZ G. Serum bone Gla protein and aminoterminal propeptide of type III procollagen levels in patients with GH deficiency before and after met-GH treatment. In: Cavallo L., Job J.C., New M.I. (Eds.), Growth disorders: the state of the art. Serono Symposia, Raven Press, New York, 81: 329, 1991.

    Google Scholar 

  14. Saggese G., Baroncelli G.I., Bertelloni S. Phospho-calcium metabolism and related parameters: relationship with growth. In: Cavallo L., Job J.C., New M.I. (Eds.), Growth disorders: the state of the art. Serono Symposia, Raven Press, New York, 81: 137, 1991.

    Google Scholar 

  15. Johansen J.S., Pedersen S.A., Jorgensen J.O.L., Riis B.J., Christiansen C., Christiansen J.S., Skakkebaek N.E. Effects of growth hormone (GH) on plasma bone Gla protein in GH-deficient adults. J. Clin. Endocrinol. Metab. 70: 916, 1990.

    Article  CAS  PubMed  Google Scholar 

  16. Kaufman J.M., Taelman P., Vermeulen A., Vandeweghe M. Bone mineral status in growth hormone-deficient males with isolated and multiple pituitary deficiencies of childhood onset. J. Clin. Endocrinol. Metab. 74: 118, 1992.

    CAS  PubMed  Google Scholar 

  17. Whitehead H.M., Boream C., Mcllrath E.M., Sheridan B., Kennedy L., Atkinson A.B., Hadden D.R. Growth hormone treatment of adults with growth hormone deficiency: results of 13-month placebo controlled cross-over study. Clin. Endocrinol. (Oxf.) 36: 45, 1992.

    Article  CAS  Google Scholar 

  18. Cuneo R.C., Salomon F., McGauley G.A., Sonksen P.H. The growth hormone deficiency syndrome in adults. Clin. Endocrinol. (Oxf.) 37: 387, 1992.

    Article  CAS  Google Scholar 

  19. Rosalki S.B., Foo A.Y. Two new methods for separating and quantifying bone and liver alkaline phosphatase isoenzymes in plasma. Clin. Chem. 30: 1182, 1984.

    CAS  PubMed  Google Scholar 

  20. Raisz L.G. Local and systemic factors in the pathogenesis of osteoporosis. N. Engl. J. Med. 328: 818, 1988.

    Google Scholar 

  21. Hock J.M., Centrella M., Canalis E. Insulin-like growth factor I has independent effects on bone matrix formation and cell replication. Endocrinology 122: 254, 1988.

    Article  CAS  PubMed  Google Scholar 

  22. Jensen L.T., Jorgensen J.O.L., Risteli J., Christiansen J.S., Lorenzen I. Type I and III procollagen propeptide in growth hormone-deficient patients: effects of increasing doses of GH. Acta Endocrinol. (Copenh.) 124: 278, 1991.

    CAS  Google Scholar 

  23. Elomaa I., Virkkunen P., Risteli L., Risteli J. Serum concentration of the cross-linked carboxiterminal telopeptide of type I collagen (ICTP) is a useful prognostic indicator in multiple myeloma. Br. J. Cancer 6: 337, 1992.

    Article  Google Scholar 

  24. Risteli J., Niemi S., Elomaa I., Risteli L. Bone resorption assay based on a peptide liberated during type I degradation. J. Bone Min. Res. 6 (Suppl 1): 251, 1991.

    Google Scholar 

  25. Elomaa I., Virkkunen P., Risteli L., Risteli J. A new sensitive bone resorption marker in serum. A cross-linked peptide liberated during type I collagen degradation. Preliminary results in multiple myeloma. Bone Miner. 17 (Suppl 1): 134, 1992.

    Article  Google Scholar 

  26. Sartorio A., Conti A., Monzani M., Faglia G. Serum bone Gla protein (BGP) and carboxyterminal cross linked telopeptide of type I collagen (ICTP) levels in patients with primary hyperparathyroidism before and after surgery. Eur. J. Int. Med., in press.

  27. Van der Veen E.A., Netelembos J.C. Growth hormone (replacement) therapy in adults: bone and calcium metabolism. Horm. Res. 33 (Suppl. 4): 65, 1990.

    Article  PubMed  Google Scholar 

  28. Bengtsson B.A., Eden S., Lonn L., Kvist H., Stokland A., Lindstedt G., Bosaeus I, Tolli J., Sjostrom L., Isaksson O.G.P. Treatment of adults with growth hormone (GH) deficiency with recombinant human GH. J. Clin. Endocrinol. Metab. 76: 309, 1993.

    CAS  PubMed  Google Scholar 

  29. Sartorio A., Conti A., Monzani M. New markers of bone and collagen turnover in children and adults with GH deficiency. Postgrad. Med. J., in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by Progetti di Ricerca Corrente, Centro Auxologico Italiano, IRCCS, Milan, Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sartorio, A., Conti, A., Monzani, M. et al. Growth hormone treatment in adults with GH deficiency: Effects on new biochemical markers of bone and collagen turnover. J Endocrinol Invest 16, 893–898 (1993). https://doi.org/10.1007/BF03348952

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03348952

Key-words

Navigation