Skip to main content
Log in

Founder mutations in the Netherlands

SCN5a 1795insD, the first described arrhythmia overlap syndrome and one of the largest and best characterised families worldwide

  • Review article
  • Published:
Netherlands Heart Journal Aims and scope Submit manuscript

Abstract

In this part of a series on founder mutations in the Netherlands, we review a Dutch family carrying the SCN5a 1795insD mutation. We describe the advances in our understanding of the premature sudden cardiac deaths that have accompanied this family in the past centuries. The mutation carriers show a unique overlap of long-QT syndrome (type 3), Brugada syndrome and progressive cardiac conduction defects attributed to a single mutation in the cardiac sodium channel gene SCN5a. It is at present one of the largest and best-described families worldwide and we have learned immensely from the mouse strains with the murine homologue of the SCN5a 1795insD mutation (SCN5a 1798insD). From the studies currently performed we are about to obtain new insights into the phenotypic variability in this monogenic arrhythmia syndrome, and this might also be relevant for other arrhythmia syndromes and the general population. (Neth Heart J 2009;17:422–8.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van den Berg MP, Viersma JW, Beaufort-Krol GC, Bink-Boelkens MT, Bezzina CR, Veldkamp MW, et al. A large family characterised by nocturnal sudden death. Neth Heart J. 2002;10:304–12.

    Google Scholar 

  2. Bezzina C, Veldkamp MW, van den Berg MP, Postma AV, Rook MB, Viersma JW, et al. A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ Res. 1999;85:1206–13.

    Google Scholar 

  3. Veldkamp MW, Viswanathan PC, Bezzina C, Baartscheer A, Wilde AA, Balser JR. Two distinct congenital arrhythmias evoked by a multidysfunctional Na(+) channel. Circ Res. 2000;86:E91–E97.

    Google Scholar 

  4. van den Berg MP, Wilde AA, Viersma TJW, Brouwer J, Haaksma J, van der Hout AH, et al. Possible bradycardic mode of death and successful pacemaker treatment in a large family with features of long QT syndrome type 3 and Brugada syndrome. J Cardiovasc Electrophysiol. 2001;12:630–6.

    Google Scholar 

  5. Viswanathan PC, Bezzina CR, George AL Jr, Roden DM, Wilde AA, Balser JR. Gating-dependent mechanisms for flecainide action in SCN5A-linked arrhythmia syndromes. Circulation. 2001;104:1200–5.

    Google Scholar 

  6. Veldkamp MW, Wilders R, Baartscheer A, Zegers JG, Bezzina CR, Wilde AA. Contribution of sodium channel mutations to bradycardia and sinus node dysfunction in LQT3 families. Circ Res. 2003;92:976–83.

    Google Scholar 

  7. Beaufort-Krol GC, van den Berg MP, Wilde AA, van Tintelen JP, Viersma JW, Bezzina CR, et al. Developmental aspects of long QT syndrome type 3 and Brugada syndrome on the basis of a single SCN5A mutation in childhood. J Am Coll Cardiol. 2005;46:331–7.

    Google Scholar 

  8. Wilde AA, van den Berg MP. Ten years of genes in inherited arrhythmia syndromes: an example of what we have learned from patients, electrocardiograms, and computers. J Electrocardiol. 2005;38:145–9.

    Google Scholar 

  9. Remme CA, Verkerk AO, Nuyens D, van Ginneken AC, van Brunschot S, Belterman CN, et al. Overlap syndrome of cardiac sodium channel disease in mice carrying the equivalent mutation of human SCN5A-1795insD. Circulation. 2006;114:2584–94.

    Google Scholar 

  10. van den Berg MP, Haaksma J, Veeger NJ, Wilde AA. Diurnal variation of ventricular repolarization in a large family with LQT3-Brugada syndrome characterized by nocturnal sudden death. Heart Rhythm. 2006;3:290–5.

    Google Scholar 

  11. van den Berg MP, Haaksma J, Wilde AAM. T-wave alternans in a patient with long-QT syndrome type 3. Neth Heart J. 2006;14:152–3.

    Google Scholar 

  12. van den Berg MP, Haaksma J. Rhythmic ECG Changes in a patient with long QT syndrome type 3. J Cardiovasc Electrophysiol. 2007;18:1342–3.

    Google Scholar 

  13. Remme CA, Scicluna BP, Verkerk AO, Amin AS, van Brunschot S, Beekman L et al. Genetically determined differences in sodium current characteristics modulate conduction Disease Severity in Mice With Cardiac Sodium Channelopathy. Circ Res. 2009;104:1283–92.

    Google Scholar 

  14. Tobe TJ, de Langen CD, Bink-Boelkens MT, Mook PH, Viersma JW, Lie KI, et al. Late potentials in a bradycardia-dependent long QT syndrome associated with sudden death during sleep. J Am Coll Cardiol. 1992;19:541–9.

    Google Scholar 

  15. Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. Am Heart J. 1957;54:59–68.

    Google Scholar 

  16. Romano C, Gemme G, Pongiglione R. Rare cardiac arrhythmias of the pediatric age. II. Syncopal attacks due to paroxysmal ventricular fibrillation [Italian]. Clin Pediatr(Bologna). 1963;45:656–83.

    Google Scholar 

  17. Ward OC. A new familial cardiac syndrome in children. J Ir Med Assoc. 1964;54:103–6.

    Google Scholar 

  18. Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995;80:805–11.

    Google Scholar 

  19. Chen Q, Kirsch GE, Zhang D, Brugada R, Brugada J, Brugada P, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature. 1998;392:293–6.

    Google Scholar 

  20. Rook MB, Bezzina Alshinawi C, Groenewegen WA, van Gelder I, van Ginneken AC, Jongsma HJ, et al. Human SCN5A gene mutations alter cardiac sodium channel kinetics and are associated with the Brugada syndrome. Cardiovasc Res. 1999;44:507–17.

    Google Scholar 

  21. Schott JJ, Alshinawi C, Kyndt F, Probst V, Hoorntje TM, Hulsbeek M, et al. Cardiac conduction defects associate with mutations in SCN5A. Nat Genet. 1999;23:20–1.

    Google Scholar 

  22. Bennett PB, Yazawa K, Makita N, George AL Jr. Molecular mechanism for an inherited cardiac arrhythmia. Nature. 1995; 376:683–5.

    Google Scholar 

  23. Tan HL, Bink-Boelkens MT, Bezzina CR, Viswanathan PC, Beaufort-Krol GC, van Tintelen PJ, et al. A sodium-channel mutation causes isolated cardiac conduction disease. Nature. 2001;409:1043–7.

    Google Scholar 

  24. Clancy CE, Rudy Y. Na(+) channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism. Circulation. 2002;105:1208–13.

    Google Scholar 

  25. Lev M. The pathology of complete atrioventricular block. Prog Cardiovasc Dis. 1964;6:317–26.

    Google Scholar 

  26. Lenegre J. Etiology and pathology of bilateral bundle branch block in relation to complete heart block. Prog Cardiovasc Dis. 1964;6:409–44.

    Google Scholar 

  27. van Veen TA, Stein M, Royer A, Le Quang K, Charpentier F, Colledge WH, et al. Impaired impulse propagation in Scn5aknockout mice: combined contribution of excitability, connexin expression, and tissue architecture in relation to aging. Circulation. 2005;112:1927–35.

    Google Scholar 

  28. Stein M, van Veen TA, Remme CA, Boulaksil M, Noorman M, van Stuijvenberg L, et al. Combined reduction of intercellular coupling and membrane excitability differentially affects transverse and longitudinal cardiac conduction. Cardiovasc Res. 2009;83:52–60.

    Google Scholar 

  29. Remme CA, Engelen MA, van Brunschot S, van Ginneken AC, Belterman CN, van Rijen HV, et al. Severity of conduction disease and development of cardiac structural abnormalities in sodium channel disease depends on genetic background [Abstract]. Heart Rhythm. 2007;4:S60–1.

    Google Scholar 

  30. Coronel R, Casini S, Koopmann TT, Wilms-Schopman FJ, Verkerk AO, de Groot JR, et al. Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome: a combined electrophysiological, genetic, histopathologic, and computational study. Circulation. 2005;112:2769–77.

    Google Scholar 

  31. Postema PG, van Dessel PF, de Bakker JM, Dekker LR, Linnenbank AC, Hoogendijk MG, et al. Slow and discontinuous conduction conspire in brugada syndrome: a right ventricular mapping and stimulation study. Circ Arrhythm Electrophysiol. 2008;1:379–86.

    Google Scholar 

  32. Schwartz PJ, Vanoli E, Crotti L, Spazzolini C, Ferrandi C, Goosen A, et al. Neural control of heart rate is an arrhythmia risk modifier in long QT syndrome. J Am Coll Cardiol. 2008;51:920–9.

    Google Scholar 

  33. Postema PG, Grundeken M, Kilicarslan M, Bezzina CR, Wilde AA, van den Berg MP. Age-dependent right ventricular conduction defects in a SCN5a overlap syndrome [Abstract]. Eur Heart J. 2008;29:34.

    Google Scholar 

  34. Towbin JA. Ventricular tachycardia or conduction disease: what is the mechanism of death associated with SCN5A? J Cardiovasc Electrophysiol. 2001;12:637–8.

    Google Scholar 

  35. List of Drugs that Prolong the QT Interval and/or Induce Torsades de Pointes Ventricular Arrhythmia. University of Arizona Health Sciences Center 2009;Available from: URL: http://www.qtdrugs.org/

  36. Postema PG, Wolpert C, Amin AS, Probst V, Borggrefe M, Roden DM, et al. Drugs and Brugada syndrome patients: review of the literature, recommendations and an up-to-date website (www.brugadadrugs.org). Heart Rhythm. 2009;6:1335–41.

  37. Scicluna BP, Wilde AW, Bezzina CR. The primary arrhythmia syndromes: same mutation, different manifestations. Are we starting to understand why? J Cardiovasc Electrophysiol. 2008;19:445–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Van den Berg.

Additional information

Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands

Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands

Department of Clinical Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands

Department of Paediatrics, Division of Paediatric Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands

Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands

Department of Clinical Genetics, Academic Hospital Maastricht, University of Maastricht, Maastricht, the Netherlands

Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands

Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, and Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands

M.P. van den Berg Department of Cardiology, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands

Rights and permissions

Reprints and permissions

About this article

Cite this article

Postema, P.G., Van den Berg, M.P., Van Tintelen, J.P. et al. Founder mutations in the Netherlands. NHJL 17, 422–428 (2009). https://doi.org/10.1007/BF03086296

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03086296

Navigation