Skip to main content

Advertisement

Log in

Application of recombinant rhodostomin in studying cell adhesion

  • Meeting Report
  • Published:
Journal of Biomedical Science

Abstract

Rhodostomin from venom ofAgkistrodon rhodostoma (also calledCalloselasma rhodostoma) contains 68 amino acid residues including 6 pairs of disulfide bonds and an arginine-glycine-aspartic acid (RGD) sequence at positions 49–51. It has been known as one of the strongest antagonists to platelet aggregation among the family termed disintegrin. In this review paper, in addition to introducing the characteristics of disintegrin and its related molecules, the advantages of using recombinant DNA technology to produce rhodostomin are described. The recombinant rhodostomin has been demonstrated to facilitate cell adhesion via interaction between the RGD motif of rhodostomin and integrins on the cell surface. This property allowed us to use the recombinant rhodostomin as an extracellular matrix to study cell adhesion and to distinguish attachment efficiency between two melanoma cell lines B16-F1 and B16-F10, the former is a low metastasis cell while the latter is a high metastasis cell. Furthermore, by using the recombinant rhodostomin as a substrate, osteoprogenitor-like cells are able to be selected and enriched within 3 days from rat bone marrow which contains a heterogeneous cell population. Finally, we show that the recombinant rhodostomin can be immobilized on beads and which serve as an affinity column to dissect cell-surface protein(s) binding to the RGD motif of rhodostomin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Adler M, Lazarus RA, Dennis MS, Wanger G, Solution structure of kistrin, a potent platelet aggregation inhibitor of GPIIb-IIIa antagonist. Science 253:445–447;1991.

    PubMed  Google Scholar 

  2. Agarwal KL, Buchi H, Caruthers MH, Gupta N, Khorana HG, Kleppe K, Kumar A, Ohtsuka E, Rajbhandary UL, Van de Sande JH, Sgaramella V, Weber H, Yamada T. Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature 227:27–34;1970.

    Article  PubMed  Google Scholar 

  3. Alfandari D, Wolfsberg TG, White JM, DeSimone DW. ADAM 13: A novel ADAM expressed in somitic mesoderm and neutral crest cells duringXenopus laevis development. Dev Biol 182:314–330;1997.

    Article  PubMed  Google Scholar 

  4. Almeida EAC, Huovila APJ, Sutherland AE, Stephens LE, Calarco PG, Shaw LM, Mercurio AM, Sonnenberg A, Primakoff P, Myles DG, White JM. Mouse egg integrin α6β1 functions as a sperm receptor. Cell 81:1095–1104;1995.

    Article  PubMed  Google Scholar 

  5. Au LC, Chou JS, Chang KJ, Teh GW, Lin SB. Nucleotide sequence of a full-length cDNA encoding a common precursor of platelet aggregation inhibitor and haemorrhagic protein fromCalloselasma rhodostoma venom. Biochim Biophys Acta 1173:243–245;1993.

    PubMed  Google Scholar 

  6. Au LC, Huang YB, Huang TF, Teh GW, Lin HH, Choo KB. A common precursor for a putative haemorrhagic protein and rhodostomin, a platelet aggregation inhibitor of the venom ofCalloselasma rhodosotma: Molecular cloning and sequence analysis. Biochem Biophys Res Commun 181:585–593;1991.

    Article  PubMed  Google Scholar 

  7. Benayahu D, Kletter Y, Zipori D, Wientroub S. Bone marrow-derived stromal cell line expressing osteoblastic phenotype in vitro and osteogenic capacity in vivo. J Cell Physiol 140:1–7;1989.

    Article  PubMed  Google Scholar 

  8. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP. A metalloproteinase disintegrin that releases tumornecrosis factor-α from cells. Nature 385:729–733;1997.

    Article  PubMed  Google Scholar 

  9. Blobel CP, White JM. Structure, function and evolutionary relationship of proteins containing a disintegrin domain. Curr Opin Cell Biol 4:760–765;1992.

    Article  Google Scholar 

  10. Blobel CP, Wolfsberg TG, Turck CW, Myles DG, Primakoff P, White JM. A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 356:248–252;1992.

    Article  PubMed  Google Scholar 

  11. Chang HH. Characterization of the recombinant rhodostomin induced cell adhesion and morphological change; PhD thesis, Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, 1996.

    Google Scholar 

  12. Chang HH, Chang Cp, Lo SJ. Cell adhesion and morphological change on plates coated with genetically engineered rhodostomin. Mol Biol Cell 7:S-244a;1996.

  13. Chang HH, Hu ST, Huang TF, Chen SH, Lee YHW, Lo SJ, Rhodostomin, an RGD-containing peptide expressed from a synthetic gene inEscherichia coli, facilitates the attachment of human hepatoma cells. Biochem Biophys Res Commun 190:242–249;1993.

    Article  PubMed  Google Scholar 

  14. Chang HH, Tsai WJ, Lo SJ. Glutathione S-transferase-rhodostomin fusion protein inhibits platelet aggregation and induces platelet shape change. Toxicon 35:195–204;1997.

    Article  PubMed  Google Scholar 

  15. Chi LM, Vyas AA, Rule GS, Wu WG. Expression of glutatione S-transferase-cardiotoxin fusion protein inEscherichia coli. Toxicon 32:1679–1683;1995.

    Article  Google Scholar 

  16. Chiang HS, Swaim MW, Huang TF. Characterization of platelet aggregation induced by human colon adenocarcinoma cells and its inhibition by snake venom peptides, trigramin and rhodostomin. Br J Haematol 87:325–331;1994.

    PubMed  Google Scholar 

  17. Damsky CH, Werb Z. Signal transduction by integrin receptors for extracellular matrix: Cooperative processing of extracellular information. Curr Opin Cell Biol 4:772–781;1992.

    Article  PubMed  Google Scholar 

  18. Dennis MS, Carter P, Lazarus RA. Binding interactions of kistrin with platelet glycoprotein IIb-IIIa: analysis by site-directed mutagenesis. Proteins 15:312–321;1993.

    Article  PubMed  Google Scholar 

  19. Fidler IJ. Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res 35:218–224;1975.

    PubMed  Google Scholar 

  20. Fiordalisi JJ, Gigowski RL, Grant GA. Purification of an active species of recombinant kappa-bungarotoxin. Protein Exp Purif 3:282–289;1992.

    Article  Google Scholar 

  21. Friedenstein AJ, Gorskaja U, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:276–284;1976.

    Google Scholar 

  22. Gan ZR, Gould RJ, Jacobs JW, Friedman PA, Polokoff MA. A potent platelet aggregation inhibitor from the venom of the viperEchis carinatus. J Biol Chem 263:19827–19832;1988.

    PubMed  Google Scholar 

  23. Gould RJ, Polokoff MA, Friedman PA, Huang TF, Holt JC, Cook JJ, Niewiarowski S. Disintegrins: A family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med 195:168–171;1990.

    PubMed  Google Scholar 

  24. Hawrani ASEI, Moreton KM, Sessions RB, Clarke AR, Holbrook JJ. Engineering surface loops of proteins — a preferred strategy for obtaining new enzyme function. Trends Biotechnol 12:207–211;1994.

    Article  PubMed  Google Scholar 

  25. Huang TF, Niewiarowski S. Disintegrins: The naturally-occurring antagonists of platelet fibrinogen receptor. J Toxicol Toxin Rev 13:253–273;1994.

    Google Scholar 

  26. Huang TF, Ouyang C. Action mechanism of the potent platelet aggregation inhibitor fromTrimeresurus gramineus snake venom. Thromb Res 33:124–138;1984.

    Article  Google Scholar 

  27. Huang TF, Yeh HI, Ouyang C. Mechanism of action of the platelet aggregation inhibitor purified fromAgkistrodon halys (Mamushi) snake venom. Toxicon 22:243–251;1984.

    Article  PubMed  Google Scholar 

  28. Huang TF, Wu YJ, Ouyang C. Action mechanism of the platelet aggregation inhibitor from Agkistrodon rhodostoma snake venom. Biochim Biophys Acta 925:248–257;1987.

    PubMed  Google Scholar 

  29. Huovila A-P J, Almeida ACA, White JM. ADAMs and cell fusion. Curr Opin Cell Biol 8:692–699;1996.

    Article  PubMed  Google Scholar 

  30. Hynes RO. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 69:11–25;1992.

    Article  PubMed  Google Scholar 

  31. Jayaraman K, Puccini CJ. A PCR-mediated gene synthesis strategy involving the assembly of oligonucleotides representing only one of the strands. Bio Techniques 12:392–398;1992.

    Google Scholar 

  32. Jent TW, Hendon RA, Fraenkel-Conrat H. Search for relationship among the hemolytic, phosphopolytic and neurotoxic activities of snake venoms. Proc Natl Acad Sci USA 75:600–604;1978.

    PubMed  Google Scholar 

  33. Juliano RL, Haskill S. Signal transduction from the extracellular matrix. J Cell Biol 120:577–585;1993.

    Article  PubMed  Google Scholar 

  34. Kelley MJ, Crowl RM, Dennis EA. Renaturation of cobra venom phospholipase A2 expressed from a synthetic gene inEscherichia coli. Biochim Biophys Acta 1118:107–115;1992.

    PubMed  Google Scholar 

  35. Kini RM, Evans HJ. Effects of snake venom proteins on blood platelets (review article). Toxicon 28:1387–1422;1990.

    Article  PubMed  Google Scholar 

  36. Kini RM, Evans HJ. Structural domains in venom proteins: Evidence that metalloproteases and non-enzymatic platelets aggregation inhibitors (disintegrins) from snake venoms are derived by proteolysis from a common precursor. Toxicon 30:265–293;1992.

    Article  PubMed  Google Scholar 

  37. Kumar TKS, Yang PW, Lin SH, Wu CY, Lei B, Lo SJ, Tu SC, Yu C. Cloning, direct expression and purification of a snake venom cardiotoxin inEscherichia coli. Biochem Biophys Res Commun 219:450–456;1996.

    Article  PubMed  Google Scholar 

  38. Lazarus RA, McDowell RS. Structural and function aspects of RGD-containing protein antagonists of glycoprotein IIb-IIIa. Curr Opin Biotech 4:438–445;1993.

    Article  PubMed  Google Scholar 

  39. Lee CY. Chemistry and pharmacology of polypeptide toxins in snake venoms. Ann Rev Pharmacol 12:265–286;1972.

    Article  PubMed  Google Scholar 

  40. Lu X, Rahman S, Kakkar VV, Authi KS. Substitutions of proline 42 to alanine and methionine 46 to asparagine around the RGD domain of the neurotoxin dendroaspin alter its preferential antagonism to that resembling the disintegrin elegantin. J Biol Chem 271:289–294;1996.

    Article  PubMed  Google Scholar 

  41. Malaval L, Modrowski D, Gupta AK, Aubin JE. Cellular expression of bone-related proteins during in vitro osteogenesis in rat bone marrow stromal cell cultures. J Cell Physiol 158:555–572;1994.

    Article  PubMed  Google Scholar 

  42. Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res 254:317–330;1988.

    Article  PubMed  Google Scholar 

  43. Moss NL, Jin S-LC, Milla ME, Burhart W, Carter HL, Chen WJ, Clay WC, Didsbury JR, Hassler D, Hoffman CR, Kost TA, Lambert MH, Leesnitzer MA, McCauley P, McGeehan G, Mitchell J, Moyer M, Pahel G, Rocque W, Overton LK, Schoenen F, Seaton T, Su JL, Warner J, Willard D, Becherer JD. Cloning of a disintegrin metalloproteinase that processes precursor tumor-necrosis factor-α. Nature 385:733–736;1997.

    Article  PubMed  Google Scholar 

  44. Nygren PA, Stahl S, Uhlen M. Engineering proteins to facilitate bioprocessing. Trends Biotechnol 12:184–188;1994.

    Article  PubMed  Google Scholar 

  45. Ouyang C, Huang TF. Potent platelet aggregation inhibitor fromTrimersurus gramineus snake venom. Biochim Biophys Acta 757:332–341;1983.

    PubMed  Google Scholar 

  46. Ouyang C, Ma YH, Jih HC, Teng CM. Characterization of the platelet aggregation inducer and inhibitor fromEchis carinatus snake venom. Biochim Biophys Acta 841:1–7;1985.

    PubMed  Google Scholar 

  47. Ouyang C, Teng CM, Huang TF. Characterization of snake venom components acting on blood coagulation and platelet function. Toxicon 30:945–966;1992.

    Article  PubMed  Google Scholar 

  48. Ouyang C, Yeh HI, Huang TF. A potent platelet aggregation inhibitor purified fromAgkistrodon halys (Mamushi) snake venom. Toxicon 21:979–804;1983.

    Google Scholar 

  49. Potts JR, Campbell ID. Fibronectin structure and assembly. Curr Opin Cell Biol 6:648–655;1994.

    Article  PubMed  Google Scholar 

  50. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74;1997.

    Article  PubMed  Google Scholar 

  51. Rahman S, Vijay XL, Kakkar V, Authi KS. The integrin αIIbβ3 contains distinct and interacting binding sites for snake venom RGD (Arg-Gly-Asp) proteins. Biochem J 312:223–232;1995.

    PubMed  Google Scholar 

  52. Ron D, Dressler H. pGSTag — a versatile bacterial expression plasmid for enzymatic labeling of recombinant proteins. Biotechniques 13:866–869;1992.

    PubMed  Google Scholar 

  53. Russell FE. The use of venoms and venom fractions in medicine and biology. Toxicon 15:267–269;1983.

    Google Scholar 

  54. Scragg MA, Ferrira LR. Evaluation of different staining procedures for the quantification of fibroblasts cultured in 96-well plates. Anal Biochem 198:80–85;1991.

    Article  PubMed  Google Scholar 

  55. Sheu JR, Lin CH, Chung JL, Teng CM, Huang TF. Triflavin, an Arg-Gly-Asp-containing antiplatelet peptide inhibits cell-substratum adhesion and melanoma cell-induced lung colonization. Jpn J Cancer Res 83:885–893;1992.

    PubMed  Google Scholar 

  56. Sheu JR, Huang TF. Ex-vivo and in vivo antithrombotic effect of triflavin, an RGD-containing peptide. J Pharm Pharmacol 46:58–62;1994.

    PubMed  Google Scholar 

  57. Teng CM, Huang TF. Snake venom constituents that affect platelet function. Platelet 2:77–87;1991.

    Google Scholar 

  58. Weskamp G, Blobel CP. A family of cellular proteins related to snake venom disintegrins. Proc Natl Acad Sci USA 91:2748–2751;1994.

    PubMed  Google Scholar 

  59. Weskamp G, Kratzschmar J, Reid MS, Blobel CP. MDC9, a widely expressed cellular disintegrin containing cytoplasmic SH3 ligand domains. J Cell Biol 132:717–726;1996.

    Article  PubMed  Google Scholar 

  60. Wolfsberg TG, Primakoff P, Myles DG, White JM. ADAM, a novel family of membrane proteins containing A Disintegrin And Metalloprotease domain: Multipotential functions in cell-cell and cell-matrix interactions. J Cell Biol 131:275–278;1995.

    Article  PubMed  Google Scholar 

  61. Ye QZ, Johnson L, Baragi V. Gene synthesis and expression inE. coli for PUMP, a human matrix metalloproteinase. Biochem Biophys Res Commun 186:143–149;1992.

    Article  PubMed  Google Scholar 

  62. Yuan R, Primakoff P, Myles DG. A role for the disintegrin domain of cyritestin, a sperm surface protein belonging to the ADAM family, in mouse sperm-egg plasma membrane adhesion and fusion. J Cell Biol 137:105–112;1997.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, HH., Chang, CP., Chang, JC. et al. Application of recombinant rhodostomin in studying cell adhesion. J Biomed Sci 4, 235–243 (1997). https://doi.org/10.1007/BF02253423

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253423

Key Words

Navigation