Skip to main content
Log in

Stretch activated ion channels in ventricular myocytes

  • Short Papers
  • Published:
Bioscience Reports

Abstract

Patch-clamp recordings from ventricular myocytes of neonatal rats identified ionic channels that open in response to membrane stretch caused by negative pressures (1 to 6 cm Hg) in the electrode. The stretch response, consisting of markedly increased channel opening frequency, was maintained, with some variability, during long (>40 seconds) stretch applications. The channels have a conductance averaging 120 pS in isotonic KCl, have a mean reversal potential 31 mV depolarized from resting membrane potential, and do not require external Ca++ for activation. The channels appear to be relatively non-selective for cations. Since they are gated by physiological levels of tension, stretch-activated channels may represent, a cellular control system wherein beat-to-beat tension and/or osmotic balance modulate a portion of membrane conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

SACs:

stretch-activated channels

HEPES:

4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid

References

  1. Ahumada, G. G., Sobel, B. E. and Needleman, P. (1980) The synthesis of prostaglandins by cultured rat heart myocytes and cardiac mesenchymal cells.J. Mol. Cell. Cardiol. 12:685–700.

    Google Scholar 

  2. Allen, D. G. (1977) On the relationship between action potential duration and tension in cat papillary muscle.Cardiovasc. Res. 11:210–218.

    Google Scholar 

  3. Balzer, J. R. and Roden, D. M. (1988) Lanthanum sensitive current contaminates Ik in guinea pig ventricular myocytes.Biophys. J. 53:642a (abstract).

    Google Scholar 

  4. Brehm, P., Kuhlberg, R. and Moody-Corbett, F. (1984) Properties of non-junctional acetylcholine receptor channels on innervated muscle of Xenopus larvaeJ. Physiol. Lond. 350:631–648.

    Google Scholar 

  5. Brezden, B. L., Gardner, D. R. and Morris, C. E. (1985) A potassium-selective channel in isolated lymnaea stagnalis heart muscle cells.J. Exp. Biol. 123:175–189.

    Google Scholar 

  6. Christensen, O. (1987) Mediation of cell volume regulation by Ca++ influx, through stretchactivated channels.Nature 330:66–68.

    Google Scholar 

  7. Clay, J. R. and Shrier, A. (1981) Analysis of subthreshold pacemaker currents in chick embryonic heart cells.J. Physiol. 312:491–504.

    Google Scholar 

  8. Cooper, K. E., Tang, J. M., Rae, J. L. and Eisenberg, R. S. (1986) A cation channel in frog lens epithelia responsive to pressure and calcium.J. Memb. Biol. 93:259–269.

    Google Scholar 

  9. Corey, D. P. and Hudspeth, A. J. (1979) Ionic basis of receptor potential in the vertebrate hair cell.Nature 281:675–677.

    Google Scholar 

  10. DiFrancesco, D. (1985) The cardiac hyperpolarizing-activated current,I f, origins and development.Prog. Biophys. Molec. Biol. 46:163–183.

    Google Scholar 

  11. Grigg, P. (1986) Biophysical studies of mechanoreceptorsJ. Appl. Physiol. 60:1107–1115.

    Google Scholar 

  12. Guhary, F. and Sachs, F. (1984) Stretch-activated single ion channel currents in tissue culture embryonic chick skeletal muscle.J. Physiol. Lond. 352:685–701.

    Google Scholar 

  13. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., Sigworth, F. J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.Pflugers Arch. ges. Physiol. 391:85–100.

    Google Scholar 

  14. Hamill, O. P. (1983) Potassium and chloride channels in red blood cells. In:Single Channel Recording, Sakmann, B., Neeher, E., Eds Plenum, 451–471.

  15. Josephson, I. R., Sanchey-Chapula, J. and Brown, A. M. (1984) A comparison of calcium currents in rat, in guinea pig single ventricular cells.Circ. Res. 54:144–156.

    Google Scholar 

  16. Kullberg, R. (1987) Stretch-activated ion channels in bacteria and animal cell membranes.Trends in Neurosci. 10:387–388.

    Google Scholar 

  17. Lansman, J. B., Hallam, T. J. and Rink, T. J. (1987) Single stretch-activated ion channels in vascular endothelium cells as mechanotransducers?Nature 325:811–813.

    Google Scholar 

  18. Linden, R. J. (1976) Reflexes from receptors in the heart.Cardiol. 61:7–30.

    Google Scholar 

  19. Martinac, B., Buechner, M., Delcour, A. H., Adler, J. and Kung, C. (1987) Pressure sensitive ion channels inE. Coli.Proc. Natl. Acad. Sci. USA 84:2297–2301.

    Google Scholar 

  20. McGaughey, M. D., Maughan, W. L., Sunagawa, K. and Sagawa, K. (1985) Alternating contractility in pulsus alternans studied in the isolated canine heart.Circ. 71:357–362.

    Google Scholar 

  21. Nakayayama, T., Kuraki, Y., Noma, A. and Irisawa, H. (1984) Action potential and membrane currents of single pacemaker cells of the rabbit heart,Pflugers Arch. 402:248–257.

    Google Scholar 

  22. Rajala, G. M., Pinter, M. J. and Kaplan, S. (1977) Response of the quiescent heart tube to mechanical stretch in the intact chick embryo.Develop. Biol. 61:330–337

    Google Scholar 

  23. Sachs, F. (1986) Biophysics of mechanoreception. In:Membrane Bioch.,6:173–195.

  24. Sackin, H. (1987) Stretch-activated potassium channels in renal proximal tubule.Am. J. Physiol. 253:F1253-F1262.

    Google Scholar 

  25. Sakmann, B., Methfessel, C., MIshina, M., takahashi, T., Takai, T., Masaaki, K., Fukuda, K. and Numa, S. (1985) Role of acetylcholine receptor sub-units in gating of the channel.Nature 318, 538–540.

    Google Scholar 

  26. Sigurdson, W. J., Morris, C. E., Brezden, B. L. and Gardner, D. R. (1986) Stretch activation of a K+ channel in molluscan heart cells.J. Exp. Biol. 127:191–209.

    Google Scholar 

  27. Yang, X. C. and Sachs, F. (1988) Stretch-activated (SA) ion channel in Xenopus oocytes: Permeation and block.Biophys. J. 53:412a (abstract).

    Google Scholar 

  28. Zucker, I. H. (1986) Left-ventricular receptors: Physiological controllers or pathological curiosities?Basic Res. Cardiol. 8:539–557.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craelius, W., Chen, V. & El-Sherif, N. Stretch activated ion channels in ventricular myocytes. Biosci Rep 8, 407–414 (1988). https://doi.org/10.1007/BF01121637

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01121637

Key Words

Navigation