Skip to main content
Log in

New permeability pathways induced by the malarial parasite in the membrane of its host erythrocyte: Potential routes for targeting of drugs into infected cells

  • Review
  • Published:
Bioscience Reports

Abstract

Malarial parasites propagate asexually inside the erythrocytes of their vertebrate host. Six hours after invasion, the permeability of the host cell membrane to anions and small nonelectrolytes starts to increase and reaches its peak as the parasite matures. This increased permeability differs from the native transport systems of the normal erythrocyte in its solute selectivity pattern, its enthalpy of activation and its susceptibility to inhibitors, suggesting the appearance of new transport pathways. A biophysical analysis of the permeability data indicates that the selectivity barrier discriminates between permeants according to their hydrogen bonding capacity and has solubilization properties compared to those ofiso-butanol. The new permeability pathways could result from structural defects caused in the host cell membrane by the insertion of parasite-derived polypeptides. It is suggested that the unique transport properties of the new pathways be used to target drugs into infected cells, to affect the parasite either directly or through the modulation of the intraerythrocytic environment. The feasibility of drug targeting is demonstrated inin vitro cultures of the human malarial parasitePlasmodium falciparum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allred, D. R., Sterling, C. and Morse, P. (1983).Mol. Biochem. Parasitol. 7:27–39.

    PubMed  Google Scholar 

  • Al-Saleh, E. A. and Wheeler, K. P. (1982).Biochim. Biophys. Acta 684:157–171.

    PubMed  Google Scholar 

  • Bookchin, R. M., Lew, V. L., Nagel, R. L. and Raventos, C. (1980).J. Physiol. 312:P65.

    Google Scholar 

  • Bowyer, F. (1957).Int. Rev. Cytol. 6:569–611.

    Google Scholar 

  • Braun-Breton C., Jendoubi, M., Brunet, E., Perrin, L., Scaife, J., and Da Silva, L. P. (1986).Mol. Biochem. Parasitol. 20:33–43.

    PubMed  Google Scholar 

  • Bunang, and Harinasuta, Y. (1986). In:Parasitology—Quo Vadit? (M. Howell, Ed.), Aust. Acad. Sci. Canberra, pp. 169–180.

    Google Scholar 

  • Cabantchik, Z. I., Kutner, S., Krugliak, M. and Ginsburg, H. (1983).Mol. Pharmacol. 23:92–99.

    PubMed  Google Scholar 

  • Collander, R. (1950).Acta Chem. Scand. 4:1085–1098.

    Google Scholar 

  • Deuticke, B. (1986).Membr. Biochem. 6:309–326.

    PubMed  Google Scholar 

  • Deuticke, B., Rickert, I. and Beyer, E. (1978).Biochim. Biophys. Acta 507:137–155.

    PubMed  Google Scholar 

  • Divo, A. A., Geary, T. G., Davis, N. L. and Jensen, J. B. (1985).J. Protozool. 32:59–64.

    PubMed  Google Scholar 

  • Dunn, M. J. (1969).J. Clin. Invest. 48:674–784.

    PubMed  Google Scholar 

  • Elford, B. C., Haynes, J. D., Chulay, J. D. and Wilson, R. J. M. (1985).Mol. Biochem. Parasitol.,16:43–60.

    PubMed  Google Scholar 

  • Etkin, N. L. and Eaton, J. W. (1975). In:Erythrocyte Structure and Metabolism (G. J. Brewer, Ed.), A. Liss Inc., New York, pp. 219–232.

    Google Scholar 

  • Flynn, T. P., Allen, D. W., Johnson, G. J. and White, J. G. (1983).J. Clin. Invest. 71:1215–1223.

    PubMed  Google Scholar 

  • Friedman, M. J. (1981). In:Biochemistry and Physiology of Protozoa (M. Lowandovski and S. H. Hunter, Eds.), Academic Press, New York, pp. 463–493.

    Google Scholar 

  • Ginbsurg, H. and Stein, W. D. (1987).J. Membr. Biol. 96:1–10.

    PubMed  Google Scholar 

  • Ginsburg, H., Krugliak, M., Eidelman, O. and Cabantchik, Z. I. (1983).Mol. Biochem. Parasitol. 8:177–190.

    PubMed  Google Scholar 

  • Ginsburg, H., Kutner, S., Krugliak, M. and Cabantchik, Z. I. (1985).Mol. Biochem. Parasitol. 14:313–322.

    PubMed  Google Scholar 

  • Ginsburg, H., Handeli, S., Friedman, S., Gorodetsky, R. and Krugliak, M. (1986a).Z. Parasitenk. 72:185–199.

    PubMed  Google Scholar 

  • Ginsburg, H., Gorodetsky, R., and Krugliak, M. (1986b).Biochim. Biophys. Acta 886:337–344.

    PubMed  Google Scholar 

  • Ginsburg, H., Kutner, S., Zangwil, M. and Cabantchik, Z. I. (1986c).Biochim. Biophys. Acta 861:194–196.

    PubMed  Google Scholar 

  • Holz, G. G. (1977).Bull. WHO 55:237–248.

    PubMed  Google Scholar 

  • Homewood, C. A. and Neame, K. D. (1974).Nature 252:718–719.

    PubMed  Google Scholar 

  • Honig, B., Hubbell, W. L. and Flewelling, R. F. (1986).Ann. Rev. Biophys. Biophys. Chem. 15:163–193.

    Google Scholar 

  • Howard, R. J. (1972).Immunol. Rev 61:67–107.

    Google Scholar 

  • Howard, R. J. and Sawyer, W. H. (1980).Parasitology 80:331–342.

    PubMed  Google Scholar 

  • Knauf, P. (1979).Curr. Top. Membr. Transp. 12:251–363.

    Google Scholar 

  • Kutner, S., Baruch, D., Ginsburg, H. and Cabantchik, Z. I. (1982).Biochim. Biophys. Acta 687:82–86.

    Google Scholar 

  • Kutner, S., Ginsburg, H. and Cabantchik, Z. I. (1983).J. Cell. Physiol. 114:245–251.

    PubMed  Google Scholar 

  • Kutner, S., Breuer, W. V., Ginsburg, H., Aley, S. B. and Cabantchik, Z. I. (1985).J. Cell. Physiol. 125:521–527.

    PubMed  Google Scholar 

  • Kutner, S., Breuer, W. V., Ginsburg, H. and Cabantchik, Z. I. (1986).Biochem. Pharmacol. 36:123–129.

    Google Scholar 

  • Lambros, C. and Vanderberg, J. P. (1979).J. Parasitol. 65:418–420.

    PubMed  Google Scholar 

  • Le Fevre, P. G. (1948).J. Gen. Physiol. 31:505–527.

    Google Scholar 

  • Lepke, S. and Passow, H. (1973).Biochim. Biophys. Acta 298:529–533.

    PubMed  Google Scholar 

  • Lieb, W. R. and Stein, W. D. (1986).J. Membr. Biol. 92:111–119.

    PubMed  Google Scholar 

  • Neame, K. D. and Homewood, C. A. (1975).Int. J. Parasitol. 5:537–540.

    PubMed  Google Scholar 

  • Pfaller, M. A., Krogstadt, D. J., Parquette, A. R. and Nguyen-Dinh, P. (1982).Exp. Parasitol. 54:391–396.

    PubMed  Google Scholar 

  • Renkin, E. M. (1954).J. Gen. Physiol. 38:225–243.

    PubMed  Google Scholar 

  • Rieckmann, K. H. (1983).Ann. Rev. Med. 34:321–325.

    PubMed  Google Scholar 

  • Roth, E. F., Schulman, S., Vanderberg, J., and Olson, J., (1986).Blood 67:827–830.

    PubMed  Google Scholar 

  • Scheibel, L. W. and Adler, A. (1982).Mol. Pharmacol. 22:140–144.

    PubMed  Google Scholar 

  • Seed, T. and Kreier, J. (1972).Proc. Helminth. Soc. Wash. 39:387–411.

    Google Scholar 

  • Sherman, I. W. (1979).Microbiol. Rev. 43:453–495.

    PubMed  Google Scholar 

  • Sherman, I. W. (1985).Parasitology 91:609–645.

    PubMed  Google Scholar 

  • Sherman, I. W. and Tanigoshi, L. (1974a).J. Protozool. 21:603–607.

    PubMed  Google Scholar 

  • Sherman, I. W. and Tanigoshi, L. (1974b).Exp. Parasitol. 35:369–373.

    PubMed  Google Scholar 

  • Sherman, I. W. and Greenan, L. (1984).Trans. Roy. Soc. Trop. Med. Hyg. 78:641–644.

    PubMed  Google Scholar 

  • Stein, W. D. (1967).The Movement of Molecules Across Cell Membranes. Academic Press, New York.

    Google Scholar 

  • Van Hoogevest, P., Du Maine, A. P. M., De Kruijff, B., and De Gier, B. (1984).Biochim. Biophys. Acta 777:241–252.

    PubMed  Google Scholar 

  • Vial, H. J., Thuet, M. J. and Philippot, J. R., (1982).J. Protozool. 29:258–263.

    PubMed  Google Scholar 

  • Yeagle, P. L. (1985).Biochim. Biophys. Acta 822:267–287.

    PubMed  Google Scholar 

  • Zarchin, S., Krugliak, M. and Ginsburg, H. (1986).Biochem. Pharmacol. 35:2435–2442.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginsburg, H., Stein, W.D. New permeability pathways induced by the malarial parasite in the membrane of its host erythrocyte: Potential routes for targeting of drugs into infected cells. Biosci Rep 7, 455–463 (1987). https://doi.org/10.1007/BF01116501

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01116501

Key Words

Navigation