Skip to main content

Peacock Exploration: A Lightweight Exploration for UAV Using Control-Efficient Trajectory

  • Conference paper
  • First Online:
RiTA 2020

Abstract

Unmanned Aerial Vehicles have received much attention in recent years due to its wide range of applications, such as exploration of an unknown environment to acquire a 3D map without prior knowledge of it. Existing exploration methods have been largely challenged by computationally heavy probabilistic path planning. Similarly, kinodynamic constraints or proper sensors considering the payload for UAVs were not considered. In this paper, to solve those issues and to consider the limited payload and computational resource of UAVs, we propose “Peacock Exploration”: A lightweight exploration method for UAVs using precomputed minimum snap trajectories which look like a peacock’s tail. Using the widely known, control efficient minimum snap trajectories and OctoMap, the UAV equipped with a RGB-D camera can explore unknown 3D environments without any prior knowledge or human-guidance with only O(logN) computational complexity. It also adopts the receding horizon approach and simple, heuristic scoring criteria. The proposed algorithm's performance is demonstrated by exploring a challenging 3D maze environment and compared with a state-of-the-art algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jung, S., et al.: Toward autonomous bridge inspection: a framework and experimental results. In: Proceedings of the International Conference on Ubiquitous Robots (UR), pp. 208–211 (2019)

    Google Scholar 

  2. Jung, S., Song, S., Youn, P., Myung, H.: Multi-layer coverage path planner for autonomous structural inspection of high-rise structures. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS), pp. 7397–7402 (2018)

    Google Scholar 

  3. Makarenko, A., Williams, S., Bourgault, F., Durrant-Whyte, H.: An experiment in integrated exploration. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) vol. 1, pp. 534–539 (2002)

    Google Scholar 

  4. Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon" next-best-view" planner for 3d exploration. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1462–1468 (2016)

    Google Scholar 

  5. Selin, M., Tiger, M., Duberg, D., Heintz, F., Jensfelt, P.: Efficient autonomous exploration planning of large-scale 3D environments. IEEE Robot. Autom. Lett. 4(2), 1699–1706 (2019)

    Article  Google Scholar 

  6. Song, J., Gupta, S.: ε* : an online coverage path planning algorithm. IEEE Trans. Rob. 34(2), 526–533 (2018)

    Article  Google Scholar 

  7. Heng, L., Gotovos, A., Krause, A., Pollefeys, M.: Efficient visual exploration and coverage with a micro aerial vehicle in unknown environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1071–1078 (2015)

    Google Scholar 

  8. Spasojevic, I., Murali, V., Karaman, S.: Perception-aware time optimal path parameterization for quadrotors. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 3213–3219 (2020)

    Google Scholar 

  9. Dang, T., Papachristos, C., Alexis, K.: Visual saliency-aware receding horizon autonomous exploration with application to aerial robotics. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2526–2533 (2018)

    Google Scholar 

  10. Dai, A., Papatheodorou, S., Funk, N., Tzoumanikas, D., Leutenegger, S.: Fast frontier-based information-driven autonomous exploration with an MAV. In: Proceedings of the IEEE Interna-tional Conference on Robotics and Automation (ICRA), pp. 9570–9576 (2020)

    Google Scholar 

  11. Zhang, J., Chadha, R. G., Velivela, V., Singh, S.: P-CAP: pre-computed alternative paths to enable aggressive aerial maneuvers in cluttered environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8456–8463 (2018)

    Google Scholar 

  12. Zhang, J., Hu, C., Chadha, R., Singh, S.: Maximum likelihood path planning for fast aerial maneuvers and collision avoidance. In: Proceedings of the IEEE/RSJ International Conference on Intelli-gent Robots and Systems (IROS), pp. 2805–2812 (2019)

    Google Scholar 

  13. Tordesillas, J., Lopez, B., Everett, M., How, J.: Faster: fast and safe trajectory planner for flights in unknown environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1934–1940 (2019)

    Google Scholar 

  14. Witting, C., Fehr, M., Bähnemann, R., Oleynikova, H., Siegwart, R.: History-aware auton-omous exploration in confined environments using MAVs. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5208–5215 (2018)

    Google Scholar 

  15. Popovic, M., Vidal-Calleja, T., Chung, J.J., Nieto, J., Siegwart, R.: Informative path planning for active field mapping under localization uncertainty. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 10751–10757 (2020)

    Google Scholar 

  16. Kim, A., Eustice, R.M.: Active visual SLAM for robotic area coverage: theory and experiment. Int. J. Robot. Res. 34(4–5), 457–475 (2015)

    Article  Google Scholar 

  17. Papachristos, C., Khattak, S., Alexis, K.: Uncertainty-aware receding horizon exploration and mapping using aerial robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 4568–4575 (2017)

    Google Scholar 

  18. McGuire, K.N., De Wagter, C., Tuyls, K., Kappen, H.J., de Croon, G.C.H.E.: Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment. Sci. Robot. 4(35), eaaw9710 (2019). https://doi.org/10.1126/scirobotics.aaw9710

    Article  Google Scholar 

  19. Gammell, J., Srinivasa, S., Barfoot, T.: Informed RRT*: optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2014) 2997–3004

    Google Scholar 

  20. LaValle, S.: Rapidly-exploring random trees: a new tool for path planning (1998)

    Google Scholar 

  21. Geraerts, R., Overmars, M.H.: A comparative study of probabilistic roadmap planners. In: Boissonnat, J.D., Burdick, J., Goldberg, K., Hutchinson, S. (eds.) Algorithmic Foundations of Robotics V. Springer Tracts in Advanced Robotics, pp. 43–57, vol. 7 (2004). Springer, Heidelberg. https://doi.org/10.1007/978-3-540-45058-0_4

  22. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2520–2525 (2011)

    Google Scholar 

  23. Hornung, A., Wurm, K., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 34(3), 189–206 (2013)

    Article  Google Scholar 

  24. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, (2004) 2149–2154

    Google Scholar 

  25. Paul Carmona, peacock on green grass field during daytime (2020). https://unsplash.com/photos/hbWHAmdzLBg

  26. Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In: Inaba, M., Corke, P. (eds.) Robotics Research. Springer Tracts in Advanced Robotics, pp. 649–666, vol. 114 (2016). Springer, Cham. https://doi.org/10.1007/978-3-319-28872-7_37

  27. Hu, X., Olesen, D., Knudsen, P.: Trajectory generation using semidefinite programming for multi-rotors. In: Proceedings of the European Control Conference (ECC), pp. 2577–2582 (2019)

    Google Scholar 

  28. Lee, T., Leok, M., McClamroch, N.: Geometric tracking control of a quadrotor UAV on SE (3). In: Proceedings of the IEEE Conference on Decision and Control (CDC), pp. 5420–5425 (2010)

    Google Scholar 

  29. Dharmadhikari, M., et al.: Motion primitives-based path planning for fast and agile exploration using aerial robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2020)

    Google Scholar 

Download references

Acknowledgement

The students are supported by Korea Ministry of Land, Infrastructure and Transport (MOLIT) as “Innovative Talent Education Program for Smart City” and BK21 FOUR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Myung .

Editor information

Editors and Affiliations

Appendix

Appendix

The specification of the experimental computer is shown at the table below (Table 4).

Table 4. Experimental Computer Setup

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, E.M., Choi, D., Myung, H. (2021). Peacock Exploration: A Lightweight Exploration for UAV Using Control-Efficient Trajectory. In: Chew, E., et al. RiTA 2020. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-4803-8_16

Download citation

Publish with us

Policies and ethics