Skip to main content

Altered Soil-Soil Water Interactions Inferred from Stream Water Chemistry at an Artificially Acidified Watershed at Bear Brook Watershed, Maine USA

  • Chapter
The Bear Brook Watershed in Maine: A Paired Watershed Experiment

Abstract

The Bear Brook Watershed in Maine, USA is the site of a paired watershed study. West Bear (WB) catchment is being artificially acidified with 1,800 eq ha−1 y−1 of (NH4)2SO4. East Bear (EB) serves as the control. After six years of artificial acidification, volume-weighted concentrations in WB, normalized to EB, increased approximately as follows, in Reg L-1: H+, 15; Al (umoles), 50; Al (p.eq L-1), 100; Ca, 50; Mg, 20; Na, 10; K, 2; SO4, 120; NI-1,, 2; NO3, 80; HCO3 has decreased 10 paq L’. Based on changing chemistry, several inferences can be made about soil-soil water interactions.

  1. 1.

    Various combinations of cation pairs in stream waters from both catchments are significantly correlated on an annual basis. The strongest linear correlations (r2 typically greater than 0.5), with positive slopes, occur for Mg versus Ca. These relationships suggest soil-soil water equilibria of the type: EquationSource % MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacaWGdbGaamyyamaaCaaaleqabaGaey4k % aSIaaGOmaaaakiabgUcaRiaad2eacaWGNbGaeyOeI0Iaamiwaiabg2 % da9iaad2eacaWGNbWaaWbaaSqabeaacqGHRaWkcaaIYaaaaOGaey4k % aSIaam4qaiaadggacqGHsislcaWGybGaai4oaiaadUeadaWgaaWcba % Gaam4qaiaadohacqGHsislcaWGnbGaam4zaaqabaGccqGH9aqpdaWc % gaqaamaabmaabaWaaSGbaeaadaWadaqaaiaad2eacaWGNbWaaWbaaS % qabeaacqGHRaWkcaaIYaaaaaGccaGLBbGaayzxaaaabaGaam4qaiaa % dggadaahaaWcbeqaaiabgUcaRiaaikdaaaaaaaGccaGLOaGaayzkaa % aabaWaaeWaaeaadaWcgaqaamaadmaabaGaamytaiaadEgacqGHsisl % caWGybaacaGLBbGaayzxaaaabaWaamWaaeaacaWGdbGaamyyaiabgk % HiTiaadIfaaiaawUfacaGLDbaaaaaacaGLOaGaayzkaaaaaaaa!6E76! ]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$C{a^{ + 2}} + Mg - X = M{g^{ + 2}} + Ca - X;{K_{Cs - Mg}} = {{\left( {{{\left[ {M{g^{ + 2}}} \right]} \mathord{\left/{\vphantom {{\left[ {M{g^{ + 2}}} \right]} {C{a^{ + 2}}}}} \right.\kern-\nulldelimiterspace} {C{a^{ + 2}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\left[ {M{g^{ + 2}}} \right]} \mathord{\left/{\vphantom {{\left[ {M{g^{ + 2}}} \right]} {C{a^{ + 2}}}}} \right.\kern-\nulldelimiterspace} {C{a^{ + 2}}}}} \right)} {\left( {{{\left[ {Mg - X} \right]} \mathord{\left/{\vphantom {{\left[ {Mg - X} \right]} {\left[ {Ca - X} \right]}}} \right.\kern-\nulldelimiterspace} {\left[ {Ca - X} \right]}}} \right)}}} \right.\kern-\nulldelimiterspace} {\left( {{{\left[ {Mg - X} \right]} \mathord{\left/{\vphantom {{\left[ {Mg - X} \right]} {\left[ {Ca - X} \right]}}} \right.\kern-\nulldelimiterspace} {\left[ {Ca - X} \right]}}} \right)}} $$ or, with assumptions: EquationSource % MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaaceWGlbGbauaadaWgaaWcbaGaam4qaiaa % dggacqGHsislcaWGnbGaam4zaaqabaGccqGH9aqpdaWcgaqaamaadm % aabaGaamytaiaadEgadaahaaWcbeqaaiabgUcaRiaaikdaaaaakiaa % wUfacaGLDbaaaeaadaWadaqaaiaadoeacaWGHbWaaWbaaSqabeaacq % GHRaWkcaaIYaaaaaGccaGLBbGaayzxaaaaaaaa!50A1! ]]</EquationSource><EquationSource Format="TEX"><![CDATA[ $${K-_{Ca - Mg}} = {{\left[ {M{g^{ + 2}}} \right]} \mathord{\left/{\vphantom {{\left[ {M{g^{ + 2}}} \right]} {\left[ {C{a^{ + 2}}} \right]}}} \right.\kern-\nulldelimiterspace} {\left[ {C{a^{ + 2}}} \right]}}$$ The value of K’Ca-Mg remains relatively constant through time in both watersheds, except in WB in and after the fourth year of the manipulation of WB. Thereafter there is preferential depletion (Mg>Ca>Na>K), primarily along shallow flow paths — thus altering the solid activity ratios of the exchange surfaces. In EB, base cation concentrations decline with increasing discharge (increasing H+), due to dilution and interaction with soils with lower base saturation. In WB the acidification reverses this relationship, perhaps partly because of displacement of cations by NH4, from the amendments. With progressive depletion of Ca and Mg in the quick-flow paths, concentrations start to decline at higher discharge, in spite of lower pH.

  2. 2.

    Sulfate concentrations increased in WB to as high as 230 µeq L−1 at high flow. The percentage of added SO4 leached to the stream increased to approximately 65% by the end of 1995. Thus, soils along base-flow paths adsorbed about 35% of the added SO4 in 1995.

  3. 3.

    Aluminum concentrations in WB have increased from a pre-manipulation maximum of 10 µmole/L at high flow to 60 µmole/L. The relationship between Al and H+ is: EquationSource[ % MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacaWGbbGaamiBaiabg2da9iaaicdacaGG % UaGaaGymaiaaiodadaqadaqaaiaadIeadaahaaWcbeqaaiabgUcaRa % aaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa % isdacaGGUaGaaG4maiaaiwdaaaa!4CF1! ]]</EquationSource><EquationSource Format="TEX"><![CDATA[ $$Al = 0.13{\left( {{H^ + }} \right)^2} + 4.35 $$ which could result from either desorption or dissolution of Al to a 2+ specie. This relationship has been relatively constant through the manipulation. The Al/Ca molar ratio increased from pre-manipulation values of 0.1 to 0.3 to 0.8, at higher flow.

  4. 4.

    The minimum pH in WB, achieved at highest flow, has decreased from about 5.3 to <4.7, an increase of about 15 µeq H+L−1. The increase in H+ has been approximately 2 µeq L−1 yr−1. Neutralization of acidity has been initially accommodated by mobilization of Ca>Mg>AI>Na>K>H; by 1995 the neutralization involves the release of Al>Ca>Mg>Na≅H>K. Thus, the soils are inferred to (1) have reduced base saturation, (2) preferential proportional loss of Mg over Ca, (3) increased SO4 saturation, and (4) higher exchangeable acidity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References Cited

  • Cosby, B.J., Wright, R.F., Hornberger, G.M., Galloway, J.N.: 1985, Water Resour. 21, 51–63.

    Article  Google Scholar 

  • Cosby, B.J., Norton, S.A., Kahl, J.S.: 1996, Sci. Tot. Environ. 183, 49–66.

    Article  Google Scholar 

  • David, M.B., Vance, G.F., Fasth, W.J.: 1991, Soil Science 151, 208–219.

    Article  Google Scholar 

  • Driscoll, C.T., Likens, G.E., Hedin, L.O., Eaton, J.S., Bormann, F.H.: 1989, Environ. Sci. Tech. 22, 137–143. Galloway, J.N., Norton, S.A., Church, N.R.: 1983, Envir. Sc,. Tech. 17, 541A - 545A.

    Google Scholar 

  • Hillman, D.C., Potter, J.F., Simon, S.1.: 1986, Analytical methods manual for the National Surface Water Survey-phase I: Eastern lake Sur, ey U.S Environ. Prot. Agency, Washington.

    Google Scholar 

  • Kahl, J.S., Norton, S.A, Fernandez, 11, Nadelhoffer, K.J., Driscoll, C.T., Aber, J.D.: 1993, Environ. Sci. Tech. 23, 565–568.

    Article  Google Scholar 

  • Kahl, J.S., Likens, G.E. et al.: 1996 Science XXX, X-Y.

    Google Scholar 

  • Nodvin, S.C., Driscoll, C.T., Likens, G.E.: 1986, Soil Sci. 142, 69–75.

    Article  Google Scholar 

  • Norton, S.A.: 1989, in Models to describe the geographic extent and time evolution of acidification and air pollution damage (Kamari, J. et al.,eds.), Springer-Verlag, 89–102.

    Google Scholar 

  • Norton, S.A, Wright, R.F., Kahl, J.S., Scofield, J.P.: 1992, Environ. Poll. 77, 279–286.

    Article  Google Scholar 

  • Norton, S.A, Kahl, J.S., Fernandez, I.J., Rustad, L.E., Scofield, J.P., Haines, T.A: 1994, For. Ecol. Manag. 68, 61–73.

    Article  Google Scholar 

  • Norton, S.A., Kahl, 1.S., Scofield, J.P., Fernandez, I.J.: 1995, in Ecosystem Manipulation Experiments: Scientific approaches, experimental design, and relevant results (Jenkins, A., Ferrier, R.C. and Kirby, C., eds.), Comm. European Comm., Brussels, 227–235.

    Google Scholar 

  • Postek, K.M., Driscoll, C.T., Kahl, J.S., Norto, S.A. 1996, Water, Air, and Soil Poll. 85, 1733–1738. Reuss, J.O.: 1983, J. Environ. Qual. 12, 591–595.

    Google Scholar 

  • Rustad, L.R., Fernandez, I.J., David, M.B., Mitchell, M.J., Nadelhoffer, K.J., Fuller, R.B.: 1996, Soil Sci. Soc. Am. J. 60, 1933–1943.

    Article  Google Scholar 

  • Shortie, W.C., Smith, K.T., Minocha, R., Lawrence, G.B., David, M.B.: 1997, J. Environ. Qual. 26 871–876. Tyler, G., Bergren, D. Bergkvist, B., Falkengren, Grerup, U., Folkeson, L, Ruehling, A.: 1985, in Effects of atmospheric pollutants on forests, wetlands, and agricultural ecosystems (Hutchinson, T.C. and Meema

    Google Scholar 

  • K.M., eds.), Springer-Verlag, Berlin, 347–360.

    Google Scholar 

  • Uddameri, V., Norton, S.A, Kahl, J.S., Scofield, J.P.: 1995, Water, Air, Soil Poll. 79, 131–146.

    Article  Google Scholar 

  • Whitehead, D.R., Charles, D.F., Reed, S.E., Jackson, S.T., Sheehan, M.C.: 1986, in Diatoms and Lake Acidity (Smol, J.P. et al.,eds.), Dr. W. Junk, Dordrecht, 251–274.

    Google Scholar 

  • Wright, R.F.: 1991, in Ecosystem Experiments (Mooney, H.A. et al., eds.),John Wiley and Sons, New York, 167–179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Norton, S., Kahl, J., Fernandez, I. (1999). Altered Soil-Soil Water Interactions Inferred from Stream Water Chemistry at an Artificially Acidified Watershed at Bear Brook Watershed, Maine USA. In: Norton, S.A., Fernandez, I.J. (eds) The Bear Brook Watershed in Maine: A Paired Watershed Experiment. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3241-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3241-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5185-1

  • Online ISBN: 978-94-017-3241-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics