Skip to main content

The peritoneal dialysis system

  • Chapter
Peritoneal dialysis

Abstract

The peritoneal dialysis system can be considered as nature’s version of a capillary kidney [1]. Peritoneal dialysis probably represents solute and fluid exchange mainly between peritoneal capillary blood and dialysis solution in the peritoneal cavity [2]. The dialysis membrane consists of the vascular wall, the interstitium, the mesothelium, and adjacent fluid films [1–5]. In this chapter, we will review the anatomy of the peritoneum and the physiology of peritoneal transport. We will also compare the peritoneal dialysis system to man-made hollow fiber dialyzers. The features of the latter have been well characterized and are very familiar to most nephrologists. Comparison of peritoneal and hollow fiber dialysis should help the reader appreciate some of the unique characteristics of the peritoneal dialysis system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nolph KD: CAPD — A logical approach to peritoneal dialysis limitations (A comparison of the peritoneal dialysis system and hollow fiber kidneys). NUA 1: 5–8, 1980.

    Google Scholar 

  2. Nolph KD, Popovich RP, Ghods AJ, Twardowski Z: Determinants of low clearances of small solutes during peritoneal dialysis. Kidney Int 13: 117–123, 1978.

    Article  PubMed  CAS  Google Scholar 

  3. Nolph KD: The peritoneal dialysis system. In: Today’s Art of Peritoneal Dialysis. Contrib Nephrol 17: 44–49, 1979.

    PubMed  CAS  Google Scholar 

  4. Nolph KD, Miller FN, Rubin J, Popovich R: New directions in peritoneal dialysis concepts and applications. Kidney Int 18 (Suppl 10): S111, 1980.

    Google Scholar 

  5. Nolph KD: Peritoneal dialysis. In: W Drukker, FM Parsons, JF Maher (eds). Replacement of Renal Function by Dialysis. Martinus Nijhoff Medical Division, The Hague, 1978, pp 277–321.

    Google Scholar 

  6. Rubin J, Nolph KD, Popovich RP, Moncrief J, Prowant B: Drainage volumes during CAPD. ASAIO 2: 2, 1979.

    Google Scholar 

  7. Erbe RW, Greene JA Jr, Weiler JM: Peritoneal dialysis during hemorrhagic shock. J Appl Physiol 22: 131–135, 1967.

    PubMed  CAS  Google Scholar 

  8. Aune S: Transperitoneal exchange 2. Peritoneal blood flow estimated by hydrogen gas clearance. Scand J Gastroenterol 5: 99, 1970.

    PubMed  CAS  Google Scholar 

  9. Texter E, Clinton JR: Small intestinal blood flow. Am J Digest Dis 8: 587, 1963.

    Article  PubMed  Google Scholar 

  10. Hare HG, Valtin H, Gosselin RE: Effects of drugs on peritoneal dialysis in the dog. J Pharmacol Exp Ther 145: 122–129, 1964.

    PubMed  CAS  Google Scholar 

  11. Henderson LW, Kintzel JE: Influence of antidiuretic hormone on peritoneal membrane area and permeability. J Clin Invest 50: 2437–2443, 1971.

    Article  PubMed  CAS  Google Scholar 

  12. Nolph KD, Ghods AJ, Brown P, Van Stone JC, Miller FN, Wiegmann DL, Harris PD: Factors affecting peritoneal dialysis efficiency. Dial Transpl 6: 52–90, 1977.

    Google Scholar 

  13. Nolph KD, Ghods AJ, Van Stone J, Brown PA: The effects of intraperitoneal vasodilators on peritoneal clearances. Trans Am Soc Artif Intern Organs 22: 586–594, 1976.

    PubMed  CAS  Google Scholar 

  14. Miller FN, Nolph KD, Harris PD, Rubin J, Wiegman DL, Joshua IG, Twardowski ZJ, Ghods AJ: Microvascular and clinical effects of altered peritoneal dialysis solutions. Kidney Int 15: 630–639, 1979.

    Article  PubMed  CAS  Google Scholar 

  15. Miller FN, Nolph KD, Harris PD, Rubin J, Wiegman DL, Joshua IG: Effects of peritoneal dialysis solutions on human clearances and rat arterioles. Trans Am Soc Artif Intern Organs 24: 131–132, 1978.

    PubMed  CAS  Google Scholar 

  16. Nolph KD: Effects of intraperitoneal vasodilators on peritoneal clearances. Dial Transpl 7: 812–817, 1978.

    Google Scholar 

  17. Nolph KD, Rubin J, Wiegman DL, Harris PD, Miller FN: Peritoneal clearances with three types of commercially available peritoneal dialysis solutions: Effects of pH adjustment and intraperitoneal nitroprusside. Nephron 24: 35–40, 1979.

    Article  CAS  Google Scholar 

  18. Nolph KD, Ghods AJ, Brown PA, Twardowski ZJ: Effects of intraperitoneal nitroprusside on peritoneal clearances with variations in dose, frequency of administration, and dwell times. Nephron 24: 114, 1979.

    Article  PubMed  CAS  Google Scholar 

  19. Wayland H: Action of histamine on the microvasculature. Proc Ist CAPD Int Symp. Excerpta Medica, Amsterdam, 1980, 18-27.

    Google Scholar 

  20. Miller FN, Joshua IG, Harris PD et al: Peritoneal dialysis solutions and the microcirculation. (Vol 17 of Contributions to Nephrology).A Trevino-Becerra, F Boen (eds). In: Today’s Art of Peritoneal Dialysis. S Karger, Basel, 1979, pp 51–58.

    Google Scholar 

  21. Nolph KD, Stoltz M, Maher JF: Altered peritoneal permeability in patients with systemic vasculitis. Ann Intern Med 78: 891–894, 1973.

    PubMed  Google Scholar 

  22. Nolph KD, Miller L, Husted FC, Hirszel P: Effects of intraperitoneal isoproterenol on reduced peritoneal clearances in patients with systemic vascular disease. J Int Urol Nephrol 8: 161–169, 1976.

    Article  CAS  Google Scholar 

  23. Brown ST, Ahearn DJ, Nolph KD: Reduced peritoneal clearances in scleroderma increased by intraperitoneal isoproterenol. Ann Intern Med 78: 891–894, 1973.

    PubMed  CAS  Google Scholar 

  24. Manery JF: Water and electrolyte metabolism. Physiol Rev 34: 334–417, 1954.

    PubMed  CAS  Google Scholar 

  25. Tarail R, Hacker ES, Tavmor R: The ultrafiltrability of potassium and sodium in human serum. J Clin Invest 31: 23–26, 1952.

    Article  PubMed  CAS  Google Scholar 

  26. Folk BP, Zierler KL, Lilienthal JL: Distribution of potassium and sodium between serum and certain extracellular fluids in man. Am J Physiol 153: 381–385, 1948.

    PubMed  CAS  Google Scholar 

  27. Brown ST, Ahearn DJ, Nolph KD: Potassium removal with peritoneal dialysis. Kidney Int 4: 67–69, 1973.

    Article  PubMed  CAS  Google Scholar 

  28. Kelton JG, Vlan R, Stiller C, Holmes E: Comparison of chemical composition of peritoneal fluid and serum. Ann Intern Med 89: 67–70, 1978.

    PubMed  CAS  Google Scholar 

  29. Henderson LW: Peritoneal ultrafiltration dialysis: Enhanced urea transfer using hypertonic peritoneal dialysis fluid. J Clin Invest 45: 950, 1966.

    Article  PubMed  CAS  Google Scholar 

  30. Henderson LW, Nolph KD: Altered permeability of the peritoneal membrane after using hypertonic peritoneal dialysis fluid. J Clin Invest 48: 992–1001, 1969.

    Article  PubMed  CAS  Google Scholar 

  31. Ahearn DJ, Nolph KD: Controlled sodium removal with peritoneal dialysis. Trans Am Soc Artif Intern Organs 28: 423–428, 1972.

    Article  Google Scholar 

  32. Nolph KD, Hano JE, Teschan PE: Peritoneal sodium transport during hypertonic peritoneal dialysis: Physiologic mechanisms and clinical implications. Ann Intern Med 70: 931–941, 1969.

    PubMed  CAS  Google Scholar 

  33. Nolph KD, Sorkin MI, Moore H: Autoregulation of sodium and potassium removal during continuous ambulatory peritoneal dialysis. Trans Am Soc Artif Intern Organs 26, 1980.

    Google Scholar 

  34. Wayland H, Silberberg A: Blood to lymph transport. Microvasc Res 15: 367, 1978.

    Article  PubMed  CAS  Google Scholar 

  35. Nolph KD, Prowant B: Complications during continuous ambulatory peritoneal dialysis. Proc 1st Int Symp on CAPD. Excerpta Medica, Amsterdam, 1980, pp 258-262.

    Google Scholar 

  36. Rubin J, Roger WA, Taylor HM, Everett ED, Prowant BP, Fruto LV, Nolph KD: Peritonitis during continuous ambulatory peritoneal dialysis. Ann Intern Med 92: 7–13, 1980.

    PubMed  CAS  Google Scholar 

  37. Wade OL, Combes B, Childs AW, Wheeler HO, Dournand A, Bradley SE: The effect of exercise on the splanchnic blood flow and splanchnic blood volume in normal man. Clin Sci 15: 457–463, 1956.

    PubMed  Google Scholar 

  38. Miller FN, Nolph KD, Joshua IG: The osmotic component of peritoneal dialysis solutions. Proc 1st Int Symp on CAPD. Excerpta Medica, Amsterdam, pp 12-17.

    Google Scholar 

  39. Nolph KD: Anatomy, physiology and kinetics of peritoneal transport during peritoneal dialysis. Proc 1st Int Symp on CAPD. Excerpta Medica, Amsterdam, 1980, pp 7-11.

    Google Scholar 

  40. Tenckhoff H, Ward G, Böen ST: The influence of dialysate volume and flow rate on peritoneal clearance. Proc Eur Dial Transpl Assoc 2: 113–117, 1965.

    Google Scholar 

  41. Stephen RL, Atkin-Thor E, Kolff WJ: Recirculating peritoneal dialysis with subcutaneous catheter. Trans Am Soc Artif Intern Organs 22: 575–585, 1976.

    PubMed  CAS  Google Scholar 

  42. Goldschmidt ZH, Pote HH, Katz MA, Shear L: Effect of dialysate volume on peritoneal dialysis kinetics. Kidney Int 5: 240–245, 1975.

    Article  Google Scholar 

  43. Miller FN, Wiegman DL, Joshua IG, Nolph KD, Rubin J: Effects of vasodilators and peritoneal dialysis solution on the microcirculation of the rat cecum. Proc Soc Exp Biol Med 161: 605–608, 1979.

    PubMed  CAS  Google Scholar 

  44. Nolph KD, Hirszel P: Recent developments in the understanding of peritoneal dialysis. Editorial by invitation to Editorial Board of Przeglad Lekarski 5: 433–436, 1975.

    Google Scholar 

  45. Karnovsky MJ: The ultrastructural basis of capillary permeability studies with peroxides as a tracer. J Cell Biol 35: 213–235, 1967.

    Article  PubMed  CAS  Google Scholar 

  46. Cotran RS: The fine structure of the microvasculature in relation to normal and altered permeability. In: EB Reeve, AC Guyton (eds). Physical Bases of Circulatory Transport: Regulation and Exchange. WB Saunders, Philadelphia, 1967, pp 249-275.

    Google Scholar 

  47. Karnovsky MJ: The ultrastructural basis of transcapillary exchanges. In: Biological Interfaces: Flows and Exchanges. Little Brown, Boston, 1968, pp 64-95.

    Google Scholar 

  48. McGary TJ, Nolph KD, Rubin J: In vitro simulations of peritoneal dialysis: A technique for demonstrating limitations on solute clearances due to stagnant fluid films and poor mixing. J Lab Clin Med 96: 1, 148–157 1980.

    PubMed  CAS  Google Scholar 

  49. Nagel W, Kuschinsky W: Study of the permeability of isolated dog mesentery. Eur J Clin Invest 1: 149–154, 1970.

    Article  PubMed  CAS  Google Scholar 

  50. Gosselin RE, Berndt WO: Diffusional transport of solutes through mesentery and peritoneum. J Theor Biol 3: 487–495, 1962.

    Article  CAS  Google Scholar 

  51. Rasio EA: Metabolic control of permeability in isolated mesentery. Am J Physiol 276: 962–968, 1974.

    Google Scholar 

  52. Maher JF, Nolph KD: Factors effecting optimal performance of coil dialyzers. Proc Int Congr Nephrol, Florence Italy, 1975, p 657.

    Google Scholar 

  53. Maher JF, Nolph KD: Resistance to diffusion in dialyzers. Clin Nephrol 1: 333-335.

    Google Scholar 

  54. Rubin J, Nolph KD, Arfania D, Miller FM, Wiegman DL, Josua IG, Harris PD: Studies on non-vasoactive peritoneal dialysis solutions. J Lab Clin Med 93: 910–915, 1979.

    PubMed  CAS  Google Scholar 

  55. Blumenkrantz MJ, Roberts CE, Card B et al. Nutritional management of the adult patient undergoing peritoneal dialysis. J Am Diet Assoc 73(3): 251–256, 1978.

    PubMed  CAS  Google Scholar 

  56. Giordano C, De Santo NG: Dietary management of patients on peritoneal dialysis. (Vol 17 of Contrib Nephrol). In: A Trevino-Becerra, F Boen (eds). Today’s Art of Peritoneal Dialysis. S Karger, Basel, 1979, pp 77–92.

    Google Scholar 

  57. Kobayashi K, Manji T, Hiramatsu S et al.: Nitrogen metabolism in patients on peritoneal dialysis. (Vol 17 of Contrib Nephrol). In: A Trevino-Becerra, F Boen (eds). Today’s Art of Peritoneal Dialysis. S Karger, Basel, 1979, pp 93–100.

    Google Scholar 

  58. Renkin EM: Exchange of substances through capillary walls: circulatory and respiratory mass transport. In: GEW Wolstenholme (eds). Ciba Foundation Symp. Little Brown & Company, Boston, 1969, pp 50–66.

    Google Scholar 

  59. Pappenheimer JR: Passage of molecules through capillary walls. Physiol Rev 33: 387, 1953.

    PubMed  CAS  Google Scholar 

  60. Nolph KD, Ahearn DJ, Esterly JA, Maher JF: Irreversible morphological and functional changes in hollow fiber kidneys with a single dialysis. Trans Am Soc Artif Intern Organs 20: 604–612, 1974.

    PubMed  Google Scholar 

  61. Nolph KD: Peritoneal clearances. (Invited Editorial). J Lab Clin Med 94: 519–525, 1979.

    PubMed  CAS  Google Scholar 

  62. Nolph KD, Popovich RP, Moncrief JW: Theoretical and practical implications of continuous ambulatory peritoneal dialysis. (Invited Editorial). Nephron 21: 117–122, 1978.

    Article  PubMed  CAS  Google Scholar 

  63. Popovich RP, Moncrief JW: Kinetic modeling of peritoneal transport. In: A Trevino-Becerra, F Boen (eds). Today’s Art of Peritoneal Dialysis. S Karger, Basel, p 59.

    Google Scholar 

  64. Popovich RP, Pyle WK, Moncrief JW et al.: Peritoneal dialysis. AIChE Symp Series 75:31.

    Google Scholar 

  65. Popovich RP: Metabolic transport, kinetics in peritoneal dialysis. Proc Ist Int Symp on CAPD. Excerpta Medica, Amsterdam, 1980, pp 28-33.

    Google Scholar 

  66. Popovich R, Moncrief JW, Nolph KD, Ghods AJ, Twardowski ZJ, Pyle WK: Continuous ambulatory peritoneal dialysis. Ann Intern Med 88: 449–456, 1978.

    PubMed  CAS  Google Scholar 

  67. Green DM, Antwiler GD, Moncrief JW, Decherd JF, Popovich RP: Measurement of the transmittance coefficient spectrum of cuprophan. Trans Am Soc Artif Intern Organs 22: 627–636, 1976.

    PubMed  CAS  Google Scholar 

  68. Donnan FG: The theory of membrane equilibrium. Chem Rev 1: 73, 1924-1925.

    Article  CAS  Google Scholar 

  69. Loeb J: Donnan equilibrium and physical properties of proteins. J Gen Physiol 3: 691, 1920-1921.

    Article  Google Scholar 

  70. Nolph KD, New DL: Effects of ultrafiltration on solute clearances in hollow fiber artificial kidneys. J Lab Clin Med 88: 593–600, 1976.

    PubMed  CAS  Google Scholar 

  71. Nolph KD, Stoltz ML, Maher JF: Electrolyte transport during ultrafiltration of protein solutions. Nephron 8: 473–487, 1971.

    Article  PubMed  CAS  Google Scholar 

  72. Glassock RJ: The nephrotic syndrome. Hosp Prac 14: 105–129, 1979.

    CAS  Google Scholar 

  73. Nolph KD, Hopkins CA, New D, Antwiler GD, Popovich RP: Differences in solute sieving with osmotic vs. hydrostatic ultrafiltration. Trans Am Soc Artif Intern Organs 22: 618–626, 1976.

    PubMed  CAS  Google Scholar 

  74. Twardowski AZ, Nolph KD, Popovich RP, Hopkins CA: Comparison of polymer, glucose and hydrostatic pressure induced ultrafiltration in a hollow fiber dialyzer: Effects on convective solute transport. J Lab Clin Med 92: 619–633, 1978.

    PubMed  CAS  Google Scholar 

  75. Rubin J, Klein E, Bower JD: Investigation of the net sieving coefficient of the peritoneal membrane during peritoneal dialysis. ASAIO J 5: 9–15, 1982.

    Google Scholar 

  76. Dedrick RL, Flessner MF, Collins JM et al.: Is the peritoneum a membrane? ASAIO J 5: 1–8, 1982.

    Google Scholar 

  77. Feriani M, Biasioli S, Chiaramonte S et al.: Anatomical bases of peritoneal permeability: A reappraisal. Anatomy of peritoneum. Int J Artif Organs 5: 345, 1982.

    PubMed  CAS  Google Scholar 

  78. Odor DL: Observations of the rat mesothelium with the electron and phase microscopes. Am J Anat 95: 433, 1954.

    Article  PubMed  CAS  Google Scholar 

  79. Baradi AF, Rao SN: A scanning electron microscope study of mouse peritoneal mesothelium. Tissue Cell 8: 159, 1976.

    Article  PubMed  CAS  Google Scholar 

  80. Andrews PM, Porter KR: The ultrastructure morphology and possible functional significance of mesothelial microvilli. Anat Res 177: 409, 1973.

    Article  CAS  Google Scholar 

  81. Baradi AF, Rayns DJ: Mesothelial intercellular junctions and pathways. Cell Tissue Res 173: 133, 1976.

    Article  PubMed  CAS  Google Scholar 

  82. Simionescu M, Simionescu N: Organization of cell junctions in the peritoneal mesothelium. J Cell Biol 74: 98, 1977.

    Article  PubMed  CAS  Google Scholar 

  83. Tsilibray EC, Wissig SL: Absorption from the peritoneal cavity; SEM study of the mesothelium covering the peritoneal surface of the muscular portion of the diaphragm. Am J Anat 199: 127, 1977.

    Article  Google Scholar 

  84. Dumont AE, Robbins E, Martelli A, Iliescu H: Platelet blockade of particle absorption from the peritoneal surface of the diaphragm (41138). Proc Soc Exp Biol Med 167: 137, 1981.

    PubMed  CAS  Google Scholar 

  85. Goitloib L, Digenis GE, Rabinovich S, Medline A, Oreopoulos DG: Ultrastructure of normal rabbit mesentery. Nephron 34: 248, 1983.

    Article  Google Scholar 

  86. Verger C, Luger A, Moore HL, Nolph KD: Acute changes in peritoneal morphology and transport properties with infectious peritonitis and mechanical injury. Kidney Int 23: 823, 1983.

    Article  PubMed  CAS  Google Scholar 

  87. Rubin J, McFarland S, Hellems EW et al.: Peritoneal dialysis during peritonitis. Kidney Int 19: 460, 1981.

    Article  PubMed  CAS  Google Scholar 

  88. Smeby LC, Wideroe TE, Svartas TM et al.: Changes in water removal due to peritonitis during continuous peritoneal dialysis. In: KD Nolph (eds). Advances in Peritoneal Dialysis. GM Gahl, M Kessel. Excerpta Medica, Amsterdam, 1981, p 287.

    Google Scholar 

  89. Twardowski ZJ, Prowant BF, Nolph KD et al.: High volume, low frequency continuous ambulatory peritoneal dialysis. Kidney Int 23: 64–70, 1983.

    Article  PubMed  CAS  Google Scholar 

  90. Twardowski ZJ, Nolph KD, Prowant B, Moore HL: Efficiency of high volume, low frequency CAPD. Trans ASAIO 29: 53–57, 1983.

    CAS  Google Scholar 

  91. Goldschmidt ZH, Pote HH, Katz MD, Shear L: Effects of dialysate volume on peritoneal dialysis kinetics. Kidney Int 5: 240–245, 1974

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nolph, K.D., Twardowski, Z.J. (1985). The peritoneal dialysis system. In: Nolph, K.D. (eds) Peritoneal dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2560-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2560-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-2562-0

  • Online ISBN: 978-94-017-2560-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics