Skip to main content

Abstract

Lunisolar resonances arise in the artificial satellite problem without short-periodic terms. The basic model including the Earth’s J 2 and a Hill-type model for the Sun or the Moon admits 20 different periodic terms which may lead to a resonance involving the satellite’s perigee, node and the longitude of the perturbing body. Some of the resonances have been studied separately since 1960s. The present paper reviews all single resonances, attaching an appropriate fundamental model to each case. Only a part of resonances match known fundamental models. An extended fundamental model is proposed to account for some complicated phenomena. Most of the double resonance cases still remain unexplored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andoyer, H.: 1903, ‘Contribution à la théorie des petites planétes dont le moyen mouvement est sensiblement double de celui de Jupiter’, Bull. Astron. 20, 321–356.

    Google Scholar 

  • Beaugé, C.: 1994, ‘Asymmetric librations in exterior resonances’, Celest. Mech. and Dyn. Astr. 60, 225–248.

    Article  ADS  MATH  Google Scholar 

  • Breiter, S.: 1999, ‘lunisolar apsidal resonances at low satellite orbits’, Celest. Mech. and Dyn. Astr. 74, 253–274.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Breiter, S.: 2000, ‘The prograde C7 resonance for Earth and Mars satellite orbits’, Celest. Mech. and Dyn. Astr. 77, 201–214.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Breiter, S.: 2001, ‘On the coupling of lunisolar resonances for Earth satellite orbits’, Celest. Mech. and Dyn. Astr. 80, 1–20.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Brouwer, D.: 1959, ‘Solution of the problem of artificial satellite theory without drag’, Astron. J. 64, 378–397.

    Article  MathSciNet  ADS  Google Scholar 

  • Coffey, S. L., Deprit, A. and Deprit, E.: 1994, ‘Frozen orbits for satellites close to an Earth-like planet’, Celest. Mech. and Dyn. Astr. 59, 37–72.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Cook, G. E.: 1962, ‘Luni-solar perturbations of the orbit of an Earth satellite’, Geophys. J. 6, 271–291.

    Article  ADS  MATH  Google Scholar 

  • Henrard, J. and Lemaitre, A.: 1983, ‘A second fundamental model for resonance’, Celest. Mech. 30, 197–218.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hough, M. E.: 1981a, ‘Orbits near critical inclination, including lunisolar perturbations’, Celest. Mech. 25, 111–136.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hough, M. E.: 198 lb, ‘Sun-synchronous orbits near critical inclination’, Celest. Mech. 25, 137–157.

    Google Scholar 

  • Hughes, S.: 1980, ‘Earth satellite orbits with resonant lunisolar perturbations, I. Resonances dependent only on inclination’, Proc. R. Soc. Lond. A 372, 243–264.

    Google Scholar 

  • Hughes, S.: 1981, ‘Earth satellite orbits with resonant lunisolar perturbations, II. Some resonances dependent on the semi-major axis, eccentricity and inclination’, Proc. R. Soc. Lond. A 375, 379–396.

    Google Scholar 

  • James, J.: 1993, The Music of the Spheres, Grove Press, New York.

    Google Scholar 

  • Kozai, Y.: 1962, ‘Secular perturbations of asteroids with high inclination and eccentricity’, Astron. J. 67, 591–598.

    Article  MathSciNet  ADS  Google Scholar 

  • Kudielka, V.: 1997, ‘Equilibria bifurcations of satellite orbits’, In: R. Dvorak and J. Henrard (eds), The Dynamical Behaviour of our Planetary System, Kluwer, pp. 243–255.

    Google Scholar 

  • Lidov, M. L.: 1961, ‘Evolution of artificial planetary satellites under the action of gravitational perturbations due to external bodies’, Isskustvennye Sputniki Zemli (in Russian) 8, 5–45.

    Google Scholar 

  • Lemaitre, A.: 1984, ‘High-order resonances in the restricted three-body problem’, Celest. Mech. and Dyn. Astr. 32, 109–126.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Musen, P.: 1960, ‘Contributions to the theory of satellite orbits’, In: H. K. Bijl (ed.), Space Research, North-Holland, New York, pp. 434–447.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Breiter, S. (2001). Lunisolar Resonances Revisited. In: Pretka-Ziomek, H., Wnuk, E., Seidelmann, P.K., Richardson, D.L. (eds) Dynamics of Natural and Artificial Celestial Bodies. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1327-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1327-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5865-2

  • Online ISBN: 978-94-017-1327-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics