Skip to main content

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 14))

Abstract

We construct and apply an exchange-correlation functional for the one-dimensional Hubbard model. This functional has built into it the Luttin-ger-liquid and Mott-insulator correlations, present in the Hubbard model, in the same way in which the usual ab initio local-density approximation (LDA) has built into it the Fermi-liquid correlations present in the electron gas. An accurate expression for the exchange-correlation energy of the homogeneous Hubbard model, based on the Bethe Ansatz (BA), is given and the resulting LDA functional is applied to a variety of inhomo-geneous Hubbard models. These include finite-size Hubbard chains and rings, various types of impurities in the Hubbard model, spin-density waves, and Mott insulators. For small systems, for which numerically exact diagonalization is feasible, we compare the results obtained from our BA-LDA with the exact ones, finding very satisfactory agreement. In the opposite limit, large and complex systems, the BA-LDA allows to investigate systems and parameter regimes that are inaccessible by traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963).

    Article  Google Scholar 

  2. J. Hubbard, Proc. Roy. Soc. A ibid 277, 237 (1964).

    Article  Google Scholar 

  3. J. Hubbard, Proc. Roy. Soc. A ibid 281, 401 (1964).

    Article  Google Scholar 

  4. C. Herring in Magnetism Vol. IV, G. T. Rado and H. Suhl, eds. (Academic Press, New York, 1966).

    Google Scholar 

  5. P. W. Anderson, Science 235, 1196 (1987).

    Article  CAS  Google Scholar 

  6. P. W. Anderson, Science ibid 256, 1526 (1992).

    Article  CAS  Google Scholar 

  7. J. Voit, Rep. Prog. Phys. 58, 977 (1995).

    Article  CAS  Google Scholar 

  8. P. Schlottmann, Int. J. Mod. Phys. B 11, 355 (1997).

    Article  Google Scholar 

  9. N. F. Mott, Metal-Insulator Transitions 2nd. ed. (Taylor Sz Francis, London, 1990).

    Google Scholar 

  10. F. Gebhard, The Mott Metal-Insulator Transition, Springer Tracts in Modern Physics Vol. 137 (Springer, New York, 1997).

    Google Scholar 

  11. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

    Article  CAS  Google Scholar 

  12. M. Bockrath et al., Nature 397, 598 (1999).

    Article  CAS  Google Scholar 

  13. H. W. Ch. Postma et al., Science 293, 76 (2001).

    Article  CAS  Google Scholar 

  14. H. W. Ch. Postma et al., Phys. Rev. B 62, 10653 (2000).

    Article  Google Scholar 

  15. O. M. Auslaender et al., Phys. Rev. Lett. 84, 1764 (2000).

    Article  CAS  Google Scholar 

  16. M. Sassetti and B. Kramer, Phys. Rev. Lett. 80, 1485 (1998).

    Article  CAS  Google Scholar 

  17. N. A. Lima, M. F. Silva, L. N. Oliveira, and K. Capelle, submitted (2001) [cond-mat 0112428].

    Google Scholar 

  18. N. A. Lima, L. N. Oliveira, and K. Capelle, submitted (2002) [cond-mat 0205554].

    Google Scholar 

  19. A. K. MacMahan, J. F. Annett, and R. M. Martin, Phys. Rev. B 42, 6268 (1990).

    Article  Google Scholar 

  20. M. S. Hybertsen, M. Schlüter, and N. E. Christensen, Phys. Rev. B 39, 9028 (1989).

    Article  CAS  Google Scholar 

  21. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, 5467 (1995).

    Article  Google Scholar 

  22. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  CAS  Google Scholar 

  23. O. Gunnarsson and K. Schönhammer, Phys. Rev. Lett. 56, 1968 (1986).

    Article  CAS  Google Scholar 

  24. K. Schönhammer and O. Gunnarsson, J. Phys. C 20, 3675 (1987).

    Article  Google Scholar 

  25. K. Schönhammer, O. Gunnarsson, and R. M. Noack, Phys. Rev. B 52, 2504 (1995).

    Article  Google Scholar 

  26. O. Gunnarsson and B. Lundqvist, Phys. Rev. B 13, 4274 (1976).

    Article  CAS  Google Scholar 

  27. U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).

    Article  Google Scholar 

  28. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  CAS  Google Scholar 

  29. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

    Article  CAS  Google Scholar 

  30. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  CAS  Google Scholar 

  31. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1993).

    Article  Google Scholar 

  32. F. D. M. Haldane, J. Phys. C 14, 2585 (1981).

    Article  Google Scholar 

  33. H. A. Bethe, Z. Phys. 71 205 (1931).

    Article  CAS  Google Scholar 

  34. E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).

    Article  Google Scholar 

  35. E. Runge and G. Zwicknagl, Ann. der Physik 5, 333 (1996).

    CAS  Google Scholar 

  36. L. J. Sham and M. Schlüter, Phys. Rev. Lett. 60, 1582 (1988).

    Article  CAS  Google Scholar 

  37. O. Gunnarsson and K. Schönhammer, Phys. Rev. Lett. 60, 1583 (1988).

    Article  CAS  Google Scholar 

  38. J. Carmelo and D. Baeriswyl, Phys. Rev. B 37, 7541 (1988).

    Article  Google Scholar 

  39. A. A. Ovchinnikov, Sov. Phys. JETP 30, 1160 (1970).

    Google Scholar 

  40. L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. Lett. 60, 2430 (1988).

    Article  Google Scholar 

  41. P. Strange, Relativistic Quantum Mechanics with Applications in Condensed Matter and Atomic Physics (Cambridge University Press, Cambridge, 1998).

    Book  Google Scholar 

  42. A. M. Chang, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 77, 2538 (1996).

    Article  CAS  Google Scholar 

  43. M. Grayson et al., Phys. Rev. Lett. 80, 1062 (1998).

    Article  CAS  Google Scholar 

  44. A. Schwartz et al., Phys. Rev. B 58, 1261 (1998).

    Article  CAS  Google Scholar 

  45. B. Dardel et al., Europhys. Lett. 24, 687 (1993).

    Article  CAS  Google Scholar 

  46. J. D. Denlinger et al., Phys. Rev. Lett. 82, 2540 (1999).

    Article  CAS  Google Scholar 

  47. C. Kim et al., Phys. Rev. Lett. 77, 4054 (1996).

    Article  CAS  Google Scholar 

  48. P. Segovia et al., Nature 402, 504 (1999).

    Article  CAS  Google Scholar 

  49. S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

    Article  Google Scholar 

  50. S. R. White, Phys. Rev. Lett. ibid 77, 3633 (1993).

    Article  Google Scholar 

  51. G. Bedürftig, B. Brendel, H. Frahm, and R. M. Noack, Phys. Rev. B 58, 10225 (1998).

    Article  Google Scholar 

  52. K. Capelle, L. N. Oliveira, Europhys. Lett. 49, 376 (2000)

    Article  CAS  Google Scholar 

  53. K. Capelle, L. N. Oliveira, Phys. Rev. B 61, 15228 (2000)

    Article  CAS  Google Scholar 

  54. M. F. Silva, K. Capelle, L. N. Oliveira, J. Mag. Magn. Mater. 226–230, 1038 (2001)

    Article  Google Scholar 

  55. K. Capelle, M. F. Silva, L. N. Oliveira, J. Mag. Magn. Mater. 226–230, 1017 (2001)

    Article  Google Scholar 

  56. J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).

    Article  CAS  Google Scholar 

  57. J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).

    Article  CAS  Google Scholar 

  58. L. J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983).

    Article  Google Scholar 

  59. N. A. Lima and L. N. Oliveira, unpublished.

    Google Scholar 

  60. K. Capelle and V. L. Libero, unpublished.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Capelle, K., Lima, N.A., Silva, M.F., Oliveira, L.N. (2003). Density-Functional Theory for the Hubbard Model: Numerical Results for the Luttinger Liquid and the Mott Insulator. In: Gidopoulos, N.I., Wilson, S. (eds) The Fundamentals of Electron Density, Density Matrix and Density Functional Theory in Atoms, Molecules and the Solid State. Progress in Theoretical Chemistry and Physics, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0409-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0409-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6508-7

  • Online ISBN: 978-94-017-0409-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics