Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 522))

Abstract

Lunar perturbations of the Earth’s artificial satellites with large semi-major axis are investigated. Long-term evolution of the orbits are studied through double averaging of the perturbing function. A first order secular solution is derived from Lagrange’s planetary equations. Types of perturbations are discussed and secular resonances between the perturbed orbits of the satellites and the Moon are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cook, G. E. (1972) Basic theory for PROD, a program for computing the development of satellite orbits, Celestial Mechanics 7, 301–314.

    Article  ADS  Google Scholar 

  2. Roth, E. A. (1973) Fast computation of high eccentricity orbits by the stroboscopic method, Celestial Mechanics 8, 245–249.

    Article  ADS  Google Scholar 

  3. Giacaglia, G. E. O. (1974) Lunar perturbations of artificial satellites of the Earth, Celestial Mechanics 9, 239–267.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Janin, G. (1974) Accurate computation of highly eccentric satellite orbits, Celestial Mechanics 10, 451–467.

    Article  ADS  MATH  Google Scholar 

  5. Lane. M. T. (1989) On analytic modeling of lunar perturbations of artificial satellites of the Earth, Celestial Mechanics 46, 287–305.

    Article  ADS  Google Scholar 

  6. Zare, K., Szebehely, V., and Liu, J. J. F. (1996) A set of regular and uniform elements for satellites of high eccentricity and multiday period, Spaceflight Mechanics 93, 589–599.

    Google Scholar 

  7. Szebehely, V. and Zare, K. (1997) Regions of chaoticity of multi-day satellite orbits, NATO ASI Aquafredda di Maratea.

    Google Scholar 

  8. Kozai Y. (1973) A new method to compute lunisolar perturbations in satellite motions, SAO Special Report 349.

    Google Scholar 

  9. Plummer, H. C. (1918) An Introductory Treatise on Dynamical Astronomy, Cambridge University Press.

    Google Scholar 

  10. Kaula, W. M. (1966) Theory of Satellite Geodesy, Blaisdell Publishing Co.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Érdi, B. (1999). Dynamics of Satellites with Multi-Day Periods. In: Steves, B.A., Roy, A.E. (eds) The Dynamics of Small Bodies in the Solar System. NATO ASI Series, vol 522. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9221-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9221-5_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5133-2

  • Online ISBN: 978-94-015-9221-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics