Skip to main content

Acclimation of Photosynthesis to the Environment

  • Chapter
Concepts in Photobiology

Summary

Photosynthesis occurs via the same basic mechanism across plant species. However, in response to the wide variety of environmental conditions under which plants grow, emphasis can be placed on one component process or another, for instance light gathering in shaded environments or electron transport and Calvin cycle activity in full sun-exposed environments. Additionally, the capacity for photosynthesis appears to be closely regulated such that it is balanced with the requirement for photosynthate on a whole plant level.

Recent research has established the importance of photoprotective processes that minimize photooxidative damage that could potentially result from the absorption of excess light. One such photoprotective process, xanthophyll cycle-dependent thermal energy dissipation, leads to the removal of absorbed light energy from the light harvesting antennae before it reaches the reaction centers and, in doing so, minimizes the formation of singlet oxygen and protects against the over-reduction of the photosynthetic electron transport chain. This process is engaged in response to environmental stresses and is capable of operating over many different time scales. Plants also possess an integrated array of antioxidants, both enzymatic and non-enzymatic, that act to detoxify reactive oxygen species and other free radicals before they damage cellular constituents. The capacity of these antioxidant systems also acclimates to the environment and is higher under conditions where enhanced oxidative stress might be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams, W.W. HI, Barker, D.H. 1998. Seasonal changes in xanthophyll cycle-dependent energy dissipation in Yucca glauca Nuttall. Plant Cell Environ. in press.

    Google Scholar 

  • Adams, W.W. III and Demmig-Adams, B. 1992. Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta 186: 390–398.

    Article  CAS  Google Scholar 

  • Adams, W.W. III and Demmig-Adams, B. 1994. Carotenoid composition and down regulation of Photosystem II in three conifer species during the winter. Physiol. Plant. 92: 451–458.

    Article  CAS  Google Scholar 

  • Adams, W.W. III and Demmig-Adams, B. 1995. The xanthophyll cycle and sustained thermal energy dissipation activity in Vinca minor and Euonymus kiautschovicus in winter. Plant Cell Environ. 18: 117–127.

    Article  Google Scholar 

  • Adams, W.W. III and Demmig-Adams, B. 1996. Energy dissipation and the xanthophyll cycle in CAM plants. In: Winter, K. and J.A.C. Smith (eds.) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, pp 97–114. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Adams, W.W. III, Diaz, M., Winter, K. 1989. Diurnal changes in photochemical efficiency, the reduction state of Q, radiationless energy dissipation, and non-photochemical fluorescence quenching in cacti exposed to natural sunlight in northern Venezuela. Oecologia 80: 553–561.

    Article  Google Scholar 

  • Adams, W.W. III, Volk, M., Hoehn, A., Demmig-Adams, B. 1992. Leaf orientation and the response of the xanthophyll cycle to incident light. Oecologia 90: 404–410.

    Article  Google Scholar 

  • Adams, W.W. III, Demmig-Adams, B., Verhoeven, A.S., Barker, D.H. 1995a. ‘Photoinhibition’ during winter stress: involvement of sustained xanthophyll cycle-dependent energy dissipation. Aust. J. Plant Physiol. 22: 261–276.

    Article  CAS  Google Scholar 

  • Adams, W.W. III, Hoehn, A., Demmig-Adams, B. 1995b. Chilling temperatures and the xanthophyll cycle. A comparison of warm-grown and overwintering spinach. Aust. J. Plant Physiol. 22: 75–85.

    Article  CAS  Google Scholar 

  • Adams, W.W. III, Demmig-Adams, B., Barker, D.H., Kiley, S. 1996. Carotenoids and Photosystem II characteristics of upper and lower halves of leaves acclimated to high light. Aust. J. Plant Physiol. 23: 669–677.

    Article  CAS  Google Scholar 

  • Allen, J.F. 1975. Oxygen reduction and optimum production of ATP in photosynthesis. Nature 256: 599–600.

    Article  CAS  Google Scholar 

  • Allen, J.F. 1992. Protein phosphorylation in the regulation of photosynthesis. Biochim. Biophys. Acta 1098: 275–335.

    Article  PubMed  CAS  Google Scholar 

  • Allen, R.D. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107: 1049–1054.

    PubMed  CAS  Google Scholar 

  • Alscher, R.G. and Hess J.L. (eds.), 1993. Antioxidants in Higher Plants. CRC Press, Boca Raton. 174 pp.

    Google Scholar 

  • Anderson, J.M. and Osmond, C.B. 1987. Shade/sun responses: compromises between acclimation and photoinhibition. In: Kyle, D.J., C.B. Osmond, C.J. Arntzen (eds.) Photoinhibition, pp 1–38. Elsevier, Amsterdam.

    Google Scholar 

  • Anderson, J.V., Chevone, B.I., Hess, J.L. 1992. Seasonal variation in the antioxidant system of eastern white pine needles. Plant Physiol. 98: 501–508.

    Article  PubMed  CAS  Google Scholar 

  • Andrews, T.J. and Lorimer, G.H. 1987. Rubisco: structure, mechanisms, and the prospects of improvement. In: Hatch, M.D. and N.K. Boardman (eds.) The Biochemistry of Plants Vol. 10, pp 131–218. Academic Press, New York.

    Google Scholar 

  • Asada, K. 1994. Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress. In: Baker, N.R. and J.R. Bowyer (eds.) Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field, pp 129–142. Bios Scientific Publishers, Oxford.

    Google Scholar 

  • Asada, K. and Takahashi, M. 1987. Production and scavenging of active oxygen in photosynthesis. In: Kyle, D.J., C.B. Osmond, C.J. Arntzen (eds.) Photoinhibition, pp 227–284. Elsevier, Amsterdam.

    Google Scholar 

  • Baker, N.R. 1994. Chilling stress and photosynthesis. In: Foyer, C.H. and P.M. Mullineaux (eds.) Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, pp 127–154. CRC Press, Boca Raton.

    Google Scholar 

  • Ball, M.C. and Passioura, J.B. 1994. Carbon gain in relation to water use: photosynthesis in mangroves. In: Schulze, E.-D. and M.M. Caldwell (eds.) Ecophysiology of Photosynthesis, pp 247–259. Springer-Verlag, Berlin.

    Google Scholar 

  • Barker, D.H. and Adams, W.W. III. 1997. The xanthophyll cycle and energy dissipation in differently oriented faces of the cactus Opuntia macrorhiza. Oecologia 109: 353–361.

    Article  Google Scholar 

  • Bassham, J.A., Benson, A.A., Kay, L.D., Harris, A.Z., Wilson, A.T., Calvin, M. 1954. The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J. Am. Chem. Soc. 76: 1760–1770.

    Article  CAS  Google Scholar 

  • Bassi, R., Pineau, B., Dainese, P., Marquardt, J. 1993. Carotenoid-binding proteins of photosystem II. Eur. J. Biochem. 212: 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Battle, R.W., Gaunt, J.K., Laidman, D.L. 1976. The effect of photoperiod on endogenous γ-tocopherol and plastochromanol in leaves of Xanthium strumarium L. (Cocklebur). Biochem. Soc. Trans. 4: 484–486.

    PubMed  CAS  Google Scholar 

  • Berry, J.A., Lorimer, G.H., Pierce, J., Seemann, J.R., Meeks, J., Freas, S. 1986. Isolation, identification and synthesis of carboxyarabinitol-1-phosphate, a diurnal regulator of ribulosebisphosphate carboxylase activity. Proc. Nat. Acad. Sci. USA 84: 734–738.

    Article  Google Scholar 

  • Bilger, W. and Björkman, O. 1990. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 25: 173–185.

    Article  CAS  Google Scholar 

  • Björkman, O. 1981. Responses to different quantum flux desities. In: Lange, O.L., P.S. Nobel, C.B. Osmond, H. Ziegler (eds.) Encyclopedia of Plant Physiology Vol. 12A. Physiological Plant Ecology I. Responses to the Physical Environment, pp 57–107. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Björkman, O. and Demmig-Adams, B. 1994. Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schulze, E.-D. and M.M. Caldwell (eds.) Ecophysiology of Photosynthesis, pp 17–47. Springer-Verlag, Berlin.

    Google Scholar 

  • Björkman, O. and Schäfer, C. 1989. A gas exchange-fluorescence analysis of photosynthetic performance of a cotton crop under high-irradiance stress [extended abstract]. Phil. Trans. Royal Soc. London. Ser. B. 323: 309–311.

    Article  Google Scholar 

  • Boardman, N.K., Anderson, J.M., Thorne, S.W., Björkman, O. 1972. Photochemical reactions of chloroplasts and components of the electron transport chain in two rainforest species. Carnegie Inst. Wash. Yearb. 71: 85–94.

    Google Scholar 

  • Bratt, C.E., Arvidsson, P.-O., Carlsson, M., Åkerlund, H.-E. 1995. Regulation of violaxanthin de-epoxidase activity by pH and ascorbate concentration. Photosynth. Res. 45: 169–175.

    Article  CAS  Google Scholar 

  • Brooks, A. and Farquhar, G.D. 1985. Effect of temperature on the CO2/O2 specificity of ribulose-1, 5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta 165: 397–406.

    Article  CAS  Google Scholar 

  • Brugnoli, E. and Björkman, O. 1992. Chloroplast movements in leaves: Influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to pH and zeaxanthin formation. Photosynth. Res. 32: 23–35.

    Article  CAS  Google Scholar 

  • Brugnoli, E., Cona, A., Lauteri, M. 1994. Xanthophyll cycle components and capacity for non-radiative energy dissipation in sun and shade leaves of Ligustrum ovalifolium exposed to conditions limiting photosynthesis. Photosynth. Res. 41: 451–463.

    Article  CAS  Google Scholar 

  • Calvin, M. and Bassham, J.A. 1962. The Photosynthesis of Carbon Compounds. W.A. Benjamin, Inc., New York 127 pp.

    Google Scholar 

  • Chazdon, R.L. 1988 Sunflecks and their importance to forest understory plants. Advan. Ecol. Res. 18: 1–63.

    Article  Google Scholar 

  • Chazdon, R.L. and Fetcher, N. 1984. Photosynthetic light environments in a lowland tropical forest of Costa Rica. J. Ecol. 72: 553–564.

    Article  Google Scholar 

  • Chazdon, R.L. and Pearcy, R.W. 1986. Photosynthetic responses to light variation in rainforest species. II. Carbon gain and photosynthetic efficiency during lightflecks. Oecologia 69: 524–531.

    Article  Google Scholar 

  • Chow, W.S. and Anderson, J.M. 1987a. Photosynthetic responses of Pisum sativum to an increase in irradiance during growth I. Photosynthetic activities. Aust. J. Plant Physiol. 14: 1–8.

    Article  CAS  Google Scholar 

  • Chow, W.S. and Anderson, J.M. 1987b. Photosynthetic responses of Pisum sativum to an increase in irradiance during growth II. Thylakoid membrane components. Aust. J. Plant Physiol. 14: 9–19.

    Article  CAS  Google Scholar 

  • Chow, W.S., Qian, L., Goodchild, D.J. and Anderson, J.M. 1987. Photosynthetic acclimation of Alocasia macrorrhiza (L.) G. Don to growth irradiance: stucture, function and composition of chloroplasts. Aust. J. Plant Physiol. 15: 107–122.

    Article  Google Scholar 

  • Cowan, I.R. 1986. Economics of carbon fixation in plants. In: Givnish, T.J. (ed.) On the Economy of Plant Form and Function, pp 133–177. Cambridge University Press, Cambridge.

    Google Scholar 

  • Crofts, A.R. and Yerkes, C.T. 1994. A molecular mechanism for qE quenching. FEBS Lett. 352: 265–270.

    Article  PubMed  CAS  Google Scholar 

  • Demmig, B., Winter, K., Krüger, A. and Czygan, F.-C. 1988. Zeaxanthin and the heat dissipation of excess light energy in Nerium oleander exposed to a combination of high light and water stress. Plant Physiol. 87: 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams, B. 1990. Carotenoids and photoprotection in plants: a role for the xanthophyll cycle. Biochim. Biophys. Acta 1020: 1–24.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B. 1998. Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiol. 39: 000–000.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B. and Adams W.W. III, 1992a. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 599–626.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B. and Adams W.W. III, 1992b. Carotenoid composition in sun and shade leaves of plants with different life forms. Plant Cell Environ. 15: 411–419.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B. and Adams W.W. III, 1994. Capacity for energy dissipation in the pigment bed in leaves with different xanthophyll cycle pools. Aust. J. Plant Physiol. 21: 575–588.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B. and Adams W.W. III, 1996a. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1: 21–26.

    Article  Google Scholar 

  • Demmig-Adams, B. and Adams W.W. III, 1996b. Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta 198: 460–470.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Adams W.W. III, Logan, B.A. and Verhoeven, A.S. 1995. Xanthophyll cycle-dependent energy dissipation and flexible PSII efficiency in plants acclimated to light stress. Aust. J. Plant Physiol. 22: 249–260.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Adams W.W. III, Barker, D.H., Logan, B.A., Bowling, D.R. and Verhoeven, A.S. 1996a. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol. Plant. 98: 253–264.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Gilmore, A.M. and Adams W.W. III, 1996b. In vivo functions of carotenoids in higher plants. FASEB J. 10: 403–412.

    PubMed  CAS  Google Scholar 

  • Demmig-Adams, B., Adams, W.W. III, Logan, B.A., Verhoeven, A.S., Rosenstiel, T.N. 1999. Ecophysiology of the xanthophyll cycle. In: Frank, H.A., Cogdell, R.J., Young, A.J., Britton, G. (eds.) The Photochemistry of Carotenoids: Applications in Biology. Advances in Photosynthesis Series. Kluwer, Dordrecht, in press.

    Google Scholar 

  • Di Mascio, P., Kaiser, S. and Sies, H. 1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 274: 532–538.

    Article  PubMed  Google Scholar 

  • Doba, T., Burton, G.W. and Ingold, K.U. 1985. Antioxidant and co-oxidant effect of Vitamin C. The effect of Vitamin C either alone or in the presence of Vitamin E or a water-soluble Vitamin E analog, upon peroxidation of aqueous multilamellar phospholipid liposomes. Biochim. Biophys. Acta 835: 298–303.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, G.E. and Walker, D.A. 1983. C3 and C4: Mechanisms and Cellular and Environmental Regulation of Photosynthesis, University of California Press, Berkeley. 542 pp.

    Google Scholar 

  • Ehleringer, J.R. and Björkman, O. 1977. Quantum yields for CO2 uptake in C3 and C4 plants. Plant Physiol. 59: 86–90.

    Article  PubMed  CAS  Google Scholar 

  • Ehleringer, J.R. and Monson, R.K. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Sys. 24: 411–439.

    Article  Google Scholar 

  • Evans, J.R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9–19.

    Article  Google Scholar 

  • Evans, J.R. and Terashima, I. 1987. Effects of nitrogen on electron transport components and photosynthesis in spinach. Aust. J. Plant Phyiol. 14: 59–68.

    Article  CAS  Google Scholar 

  • Field, C. and Mooney, H.A. 1986 The photosynthesis-nitrogen relationship in wild plants. In: Givnish, T.J. (ed.) On the Economy of Plant Form and Function, pp 25–55. Cambridge University Press, Cambridge.

    Google Scholar 

  • Field, C., Merino, J. and Mooney, H.A. 1983. Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia 60: 384–389.

    Article  Google Scholar 

  • Foote, C.S. 1976. Photosensitized oxidation and singlet oxygen: consequences in biological systems. In: Pryor, W.A. (ed.) Free Radicals in Biology Vol. 2, pp 85–124. Academic Press, New York.

    Google Scholar 

  • Foyer, C.H. 1993. Ascorbic acid. In: Alscher, R.G. and J.L. Hess (eds.) Antioxidants in Higher Plants, pp 31–58. CRC Press, Boca Raton.

    Google Scholar 

  • Foyer, C.H. and Mullineaux P.M. (eds.), 1994. Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. CRC Press, Boca Raton. 395 pp.

    Google Scholar 

  • Frank, H.A., Cua, A., Chynwat, V., Young, A., Gosztola, D. and Wasieleweski, M.R. 1994. Photophysics of carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth. Res. 41: 389–395.

    Article  CAS  Google Scholar 

  • Fryer, M.J. 1992. The antioxidant effects of thylakoid Vitamin E (α-tocopherol). Plant Cell Environ. 15: 381–392.

    Article  CAS  Google Scholar 

  • Furbank, R.T. and Badger, M.R. 1983. Oxygen exchange associated with electron transport and photophosphorylation in spinach thylakoids. Biochim. Biophvs. Acta 723: 400–409.

    Article  CAS  Google Scholar 

  • Gamble, P.E. and Burke, J.J. 1984. Effect of water stress on the chloroplast antioxidant system. I. Alterations in glutathione reductase activity. Plant Physiol. 76: 615–621.

    Article  PubMed  CAS  Google Scholar 

  • Gillham, D.J. and Dodge, A.D. 1987. Chloroplast Superoxide and hydrogen peroxide scavenging systems from pea chloroplasts: seasonal variations. Plant Sci. 50: 105–109.

    Article  CAS  Google Scholar 

  • Gilmore, A.M. 1997. Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol. Plant. 99: 197–209.

    Article  CAS  Google Scholar 

  • Gilmore, A.M. and Björkman, O. 1995. Temperature-sensitive coupling and uncoupling of ATPase-mediated, nonradiative energy dissipation: similarities between chloroplasts and leaves. Planta 197: 646–654.

    Article  CAS  Google Scholar 

  • Gilmore, A.M. and Govindjee, 1999. How higher plants respond to excess light: Energy dissipation in photosystem II This volume pp 495-530.

    Google Scholar 

  • Gilmore, A.M. and Yamamoto, H.Y. 1991. Zeaxanthin formation and energy dependent fluorescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron flow. Plant Physiol. 96: 653–643.

    Article  Google Scholar 

  • Gilmore, A.M. and Yamamoto, H.Y. 1992. Dark induction of zeaxanthin dependent non-photochemical quenching mediated by ATP. Proc. Natl. Acad. Sci. USA 89: 1899–1903.

    Article  PubMed  CAS  Google Scholar 

  • Gilmore, A.M. and Yamamoto, H.Y. 1993a. Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth. Res. 35: 67–78.

    Article  CAS  Google Scholar 

  • Givnish, T.J. 1988. Adaptation to sun and shade: a whole plant perspective. Aust. J. Plant Physiol. 15: 63–92.

    Article  Google Scholar 

  • Grace, S., Pace, R. and Wydrzynski, T. 1995. Formation and decay of monodehydroascorbate radicals in illuminated thylak’oids as determined by EPR spectroscopy. Biochim. Biophys. Acta 1229: 155–165.

    Article  Google Scholar 

  • Grace, S.C. and Logan, B.A. 1996. Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiol. 112: 1631–1640.

    PubMed  CAS  Google Scholar 

  • Grahl, H. and Wild, A. 1975. Studies on the content of P700 and cytochromes in Sinapsis alba during growth under two different light intensities. In: Marcelle, M. (ed.) Environmental and Biological Control of Photosynthesis, pp 107–113. Dr. W. Junk Publishers, The Hague.

    Chapter  Google Scholar 

  • Hager, A. and Holocher, K. 1994. Localization of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta 192: 581–589.

    Article  CAS  Google Scholar 

  • Haupt, W. and Scheuerlein, R. 1990. Chloroplast movement. Plant Cell Environ. 13: 595–614.

    Article  Google Scholar 

  • Halliwell, B. and Gutteridge, J.M.C. 1985. Free Radicals in Biology and Medicine. Clarendon Press, Oxford. 346 pp.

    Google Scholar 

  • Hess, J.L. 1993. Vitamin E, alpha-Tocopherol. In: Alscher, R.G. and J.L. Hess (eds.) Antioxidants in Higher Plants, pp 111–134 CRC Press, Boca Raton.

    Google Scholar 

  • Hikosaka, K. 1996. Effects of leaf age, nitrogen nutrition and photon flux density on the organisation of the photosynthetic apparatus in leaves of a vine (Ipomea tricolor Cav.) grown horizontally to avoid mutual shading of leaves. Planta 198: 144–150.

    Article  CAS  Google Scholar 

  • Holaday, A.S., Martindale, W., Aired, R., Brooks, A.L. and Leegood, R.C. 1992. Changes in activities of enzymes of carbon metabolism in leaes during exposure of plants to low temperature. Plant Physiol. 98: 1105–1114.

    Article  PubMed  CAS  Google Scholar 

  • Horton, P., Ruban, A.V. and Walters, R.G. 1996. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 655–684.

    Article  PubMed  CAS  Google Scholar 

  • Hossain, H.A. and Asada, K. 1984. Purification of dehydroascorbate reductase from spinach and its characterisation as a thiol enzyme. Plant Cell Physiol. 25: 85–95.

    CAS  Google Scholar 

  • Hossain, H.A., Nakano, Y. and Asada, K. 1984. Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol. 25: 385–395.

    CAS  Google Scholar 

  • Huner, N.P.A., Öquist, G., Hurry, V.M., Krol, M., Falk, S. and Griffith, M. 1993. Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth. Res. 37: 19–39.

    Article  CAS  Google Scholar 

  • Hurry, V.M., Malmberg, G., Gardeström, P. and Öquist, G. 1994. Effects of a short-term shift to low temperature and of long-term cold hardening on photosynthesis and ribulose-1, 5-bisphosphate carboxylase oxygenase and sucrose phosphate synthase activity in leaves of winter rye (Secale cereale L.). Plant Physiol. 106: 983–990.

    PubMed  CAS  Google Scholar 

  • Jablonski, P.P. and Anderson, J.W. 1982. Light-dependent reduction of hydrogen peroxide by ruptured pea chloroplasts. Plant Physiol. 69: 1407–1413.

    Article  PubMed  CAS  Google Scholar 

  • Koch, K.E. 1996. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 509–540.

    Article  PubMed  CAS  Google Scholar 

  • Krall, J.P. and Edwards, G.E. 1990. Quantum yields of Photosystem II electron transport and carbon dioxide fixation in C4 plants. Aust. J. Plant Physiol. 17: 579–588.

    Article  CAS  Google Scholar 

  • Larsson, U.K., Anderson, J.M. and Andersson, B. 1987. Variations in the relative content of the peripheral and tightly bound LHCII subpopulations during thylakoid adaptation and development. Biochim. Biophys. Acta 894: 69–75.

    Article  CAS  Google Scholar 

  • Lawlor, D.W. and Fock, H. 1975. Photosynthesis and photorespiratory CO2 evolution of water-stressed sunflower leaves. Planta 126: 247–258.

    Article  CAS  Google Scholar 

  • Lee, A. l.-c. and Thornber, J.P. 1995. Analysis of the pigment stoichiometry of pigment-protein complexes from barley (Hordeum vulgare). Plant Physiol. 107: 565–574.

    Article  PubMed  CAS  Google Scholar 

  • Leegood, R.C. 1995. effects of temperature on photosynthesis and photorespiration. In: Smirnoff, N. (ed.) Environment and Plant Metabolism, pp 45–62. Bios Scientific Publishers, Oxford.

    Google Scholar 

  • Lichtenthaler, H.K. 1985. Differences in morphology and chemical composition of leaves grown at different light intensities and qualities. In: Baker, N.R., W.J. Davies, C.K. Ong (eds.) Control of Leaf Growth, pp 201–221. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lindahl, M., Yang, D.-H. and Andersson, B. 1995. Regulatory proteolysis of the major light-harvesting chlorophyll a/b protein of Photosystem II by a light-induced membrane-associated enzyme system. Eur. J. Biochem. 231: 503–509.

    Article  PubMed  CAS  Google Scholar 

  • Logan, B.A., Barker, D.H., Demmig-Adams, B. and Adams W.W. III, 1996. Acclimation of leaf carotenoid composition and ascorbate levels to gradients in the light environment within an Australian rainforest. Plant Cell Environ. 19: 1083–1090.

    Article  CAS  Google Scholar 

  • Logan, B.A., Barker, D.H., Adams W.W. III, and Demmig-Adams, B. 1997. The response of xanthophyll cycle-dependent energy dissipation in Alocasia brisbanensis to sunflecks in a subtropical rainforest. Aust. J. Plant Physiol. 24: 27–33.

    Article  Google Scholar 

  • Logan, B.A., Demmig-Adams B., Adams, W.W. III and Grace, S.C. 1998a. Antioxidants and xanthophyll cycle-dependent energy dissipation in Cucurbita pepo and Vinca major acclimated to four growth PPFDs in the field. J. Exp. Bot. in press.

    Google Scholar 

  • Logan, B.A., Grace, S.C., Adam, W.W. and Demmig-Adams, B. 1998b. Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments. Oecologia in press.

    Google Scholar 

  • Mäenpää, P. and Andersson, B. 1989. Photosystem II heterogeneity and long-term acclimation of light-harvesting. Z. Naturforsch. 44C: 403–406.

    Google Scholar 

  • McCord, J.M. and Fridovich, I. 1969. Superoxide dismutase. An enzymic function for erthyrocuprein (hemocuprein). J. Biol. Chem. 244: 6049–6055.

    PubMed  CAS  Google Scholar 

  • Mehler, A.H. 1951. Studies on the reaction of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch. Biochem. Biophys. 33: 65–77.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, N.P., Mishra, R.K. and Singhai, G.S. 1993. Changes in the activities of antioxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperature in the presence of different protein synthesis inhibitors. Plant Physiol. 102: 867–880.

    Google Scholar 

  • Mishra, N.P., Fatma, T., Singhai, G.S. 1995. Development of antioxidative defense system of wheat seedlings in response to high light. Physiol. Plant. 95: 77–82.

    Article  CAS  Google Scholar 

  • Misra, H.P. and Fridovich, I. 1971. The generation of Superoxide radical during the autoxidation of ferredoxins. J. Biol. Chem. 246: 6886–6890.

    PubMed  CAS  Google Scholar 

  • Mittler, R. and Zilinskas, B.A. 1994. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J. 5: 397–405.

    Article  PubMed  CAS  Google Scholar 

  • Miyake, C. and Asada, K. 1992. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol. 33: 541–553.

    CAS  Google Scholar 

  • Miziorko, H.M. and Lorimer, G.H. 1983. Ribulose-1, 5-bisphophate carboxylase-oxygenase. Annu. Rev. Biochem. 52: 507–535.

    Article  PubMed  CAS  Google Scholar 

  • Mohanty, N. and Yamamoto, H.Y. 1995. Mechanism of non-photochemical chlorophyll fluorescence quenching. I. The role of de-epoxidised xanthophylls and sequestered thylakoid membrane protons as probed by dibucaine. Aust. J. Plant Physiol. 22: 231–238.

    Article  CAS  Google Scholar 

  • Morales, F., Abadía, A., Belkhodja, R. and Abadía, J. 1994. Iron deficiency-induced changes in photosynthetic pigment composition of field-grown pear (Pyrus communis L.) leaves. Plant Cell Environ. 17: 1153–1160.

    Article  CAS  Google Scholar 

  • Moran, J.F., Becana, M., Iturbe-Ormaetxe, I, Frechilla, S., Klucas, R.V. and Aparicio-Tejo, P. 1994. Drought induces oxidative stress in pea plants. Planta 194: 346–352.

    Article  CAS  Google Scholar 

  • Myers, J. 1971. Enhancement studies in photosynthesis. Annu. Rev. Plant Physiol. 22: 205–212.

    Article  Google Scholar 

  • Neubauer, C. and Yamamoto, H.Y. 1992. Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact choloroplasts. Plant Physiol. 99: 1354–1361.

    Article  PubMed  CAS  Google Scholar 

  • Nie, G.-Y, Long, S.P. and Webber, A.N. 1993. The effect of nitrogen supply on down-regulation of photosynthesis in spring wheat grown in an elevated CO2 concentration (Abstract No. 785). Plant Physiol. 102: S-138.

    Google Scholar 

  • Niki, E., Kawakami, A., Yamamoto, Y. and Kamiye, Y. 1985. Oxidation of lipids. VIII. Synergistic inhibition of oxidation of phosphatidylcholine liposomes in aqueous dispersion by Vitamin E and Vitamin C. Bull. Chem. Soc. Japan 58: 1971–1975.

    Article  CAS  Google Scholar 

  • Nobel, P.S., Zaragoza, L.J. and Smith, W.K. 1975. Relation between mesophyll surface area, photosynthetic rate, and illumination level during development for leaves of Plectranthus parviflorus Henckel. Plant Physiol. 55: 1067–1070.

    Article  PubMed  CAS  Google Scholar 

  • Oberhuber, W. and Edwards, G.E. 1993. Temperature dependence of the linkage of quantum yield of photosystem II to CO2 fixation in C4 and C3 plants. Plant Physiol. 101: 507–512.

    PubMed  CAS  Google Scholar 

  • Osmond, C.B. 1978. Crassulacean acid metabolism: a curiosity in context. Annu. Rev. Plant Physiol. 29: 379–414.

    Article  CAS  Google Scholar 

  • Osterhaut, W.J. and Haas, J.R.C. 1918. On the dynamics of photosynthesis. J. Gen. Physiol. 1: 1–16.

    Article  Google Scholar 

  • Ottander, C. and Öquist, G. 1991. Recovery of photosynthesis in winter-stressed Scots pine. Plant Cell Environ. 14: 345–349.

    Article  Google Scholar 

  • Ottander, C., Campbell, D. and Öquist, G. 1995. Seasonal changes in photosystem II organization and pigment composition in Pinus sylvestris. Planta 197: 176–183.

    Article  CAS  Google Scholar 

  • Owens, T.G. 1996. Processing of excitation energy by antenna pigments. In: Baker, N.R. (ed). Photosynthesis and the Environment, pp. 1–23 Kluwer, Dordrecht.

    Google Scholar 

  • Pearcy, R.W. 1983. The light environment and growth of C3 and C4 tree species in the understory of a Hawaiian forest. Oecologia 58: 19–25.

    Article  Google Scholar 

  • Pearcy, R.W. 1988. Photosynthetic utilisation of lightflecks by understory plants. Aust. J. Plant Physiol. 15: 223–238.

    Article  Google Scholar 

  • Pearcy, R.W. and Pfitsch, W.A. 1994. The consequences of sunflecks for photosynthesis and growth of forest understory plants. In: Schulze, E.-D. and M.M. Caldwell (eds.) Ecophysiology of Photosynthesis, pp 343–359. Springer-Verlag, Berlin.

    Google Scholar 

  • Pfündel, E. and Bilger, W. 1994. Regulation and possible function for the violaxanthin cycle. Photosynth. Res. 42: 89–109.

    Article  Google Scholar 

  • Polle, A., Kröniger, W. and Rennenberg, H. 1996. Seasonal fluctuations of ascorbate-related enzymes: acute and delayed effects of late frost in spring on antioxidative systems in needles of Norway spruce (Picea abies L.). Plant Cell Physiol. 37: 717–725.

    Article  CAS  Google Scholar 

  • Poorter, H. and Remkes, C. 1990. Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83: 553–559.

    Article  Google Scholar 

  • Quayle, J.R., Fuller, R.C., Benson, A.A. and Calvin, M. 1954. Enzymatic carboxylation of ribulose diphosphate. J. Am. Chem. Soc. 76: 3610–3611.

    Article  CAS  Google Scholar 

  • Rabinowitch, E.I. 1956. Photosynthesis and Related Processes. Vol. 2, part2. Interscience Publishers, New York. pp. 1211–2088.

    Google Scholar 

  • Renger, G. 1999. Basic principles of photosynthesis and photochemistry related to photosynthesis. This Volume.

    Google Scholar 

  • Ruban, A.V., Young, A.J., Pascal, A.A. and Horton, P. 1994. The effects of illumination on the xanthophyll composition of the Photosystem II light-harvesting complexes of spinach thylakoid membranes. Plant Physiol. 104: 227–234.

    PubMed  CAS  Google Scholar 

  • Ruban, A.V., Young, A.J., Horton, P. 1996. Dynamic properties of the minor chlorophyll a/b binding proteins of Photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants. Biochem. 35: 674–678.

    Article  CAS  Google Scholar 

  • Salvucci, M.E. and Ogren, W.L. 1996. The mechanism of Rubisco activase: Insights from studies of the properties and structure of the enzyme. Photosynth. Res. 47: 1–11.

    Article  CAS  Google Scholar 

  • Savitch, L.V., Gray, G.R. and Huner, N.P.A. 1997. Feedback-limited photosynthesis and regulation of sucrose starch accumulation during cold acclimation and low-temperature stress in a spring and winter wheat. Planta 201: 18–26.

    Article  CAS  Google Scholar 

  • Schöner, S. and Krause, G.H. 1990. Protective systems against active oxygen species in spinach: response to cold acclimation in excess light. Planta 180: 383–389.

    Article  Google Scholar 

  • Schreiber, U. and Neubauer, C. 1990. O2-dependent electron flow, membrane energization and the mechanism of non-photochemical chlorophyll fluorescence. Photosynth. Res. 25: 279–293.

    Article  CAS  Google Scholar 

  • Seemann, J.R., Berry, J.A., Freas, S.M. and Krump, M.A. 1985. Regulation of ribulose bisphosphate carboxylase activity in vivo by light modulated inhibitor of catalysis. Proc. Natl. Acad. Sci. USA 82: 8024–8028.

    Article  PubMed  CAS  Google Scholar 

  • Sen Gupta, A., Heinen, J.L., Holaday, A.S., Burke, J.J. and Allen, R.D. 1993. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/ Zn Superoxide dismutase. Proc. Nat. Acad. Sci. USA 90: 1629–1633.

    Article  CAS  Google Scholar 

  • Sharkey, T.D., Seemann, J.R. and Pearcy, R.W. 1986. Contribution of metabolites to postillumination CO2 assimilation in response to lightflecks. Plant Physiol. 82: 1063–1068.

    Article  PubMed  CAS  Google Scholar 

  • Sheen, J. 1994. Feedback control of gene expression. Photosynth. Res. 39: 427–438.

    Article  CAS  Google Scholar 

  • Sheoran, I.S. and Singh, R. 1999. Carbon dioxide metabolism. This volume.

    Google Scholar 

  • Sims, D.A. and Pearcy, R.W. 1992. Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza (Araceae) to a transfer from low to high light. Am J. Bot. 79: 449–455.

    Article  Google Scholar 

  • Smith, A.P. 1987. Repuestas de hierbes del sotobosque tropical a claros ocasionados por 1a caida de arboles. Rev. Biol. Trop. 35: 111–118 (Supplement).

    Google Scholar 

  • Smith, I.K., Vierheller, T.L. and Thorne, C.A. 1989. Properties and functions of glutathione reductase in plants. Physiol. Plant. 77: 449–456.

    Article  CAS  Google Scholar 

  • Stitt, M. and Sonnewald, U. 1995. Regulation of metabolism in transgenic plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 341–368.

    Article  CAS  Google Scholar 

  • Stitt, M., Krapp, A., Klein, D., Röper-Schwarz, U. and Paul, M. 1995. Do carbohydrates regulate photosynthesis and allocation by altering gene expression? In: Madore, M.A. and W.J. Lucas (eds.) Carbon Partitioning and Source-Sink Interactions in Plants, pp 68–77. American Society of Plant Physiologists, Rockville.

    Google Scholar 

  • Strotmann, H. and Shavit, N. 1999. Photophosphorylation. This volume.

    Google Scholar 

  • Takahashi, M. and Asada, K. 1988. Superoxide production in aprotic interior of chloroplast thylakoids. Arch. Biochem. Biophys. 267: 714–722.

    Article  PubMed  CAS  Google Scholar 

  • Telfer, A., Bishop, S.M., Phillips, D. and Barber, J. 1994. Isolated photosynthetic reaction center of photosystem II as a sensitizer for the formation of singlet oxygen. Detection and quantum yield using a chemical trapping method. J. Biol. Chem. 269: 13244–13253.

    PubMed  CAS  Google Scholar 

  • Terashima, I. and Evans, J.R. 1988. Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in spinach. Plant Cell Environ. 29: 143–155.

    CAS  Google Scholar 

  • Thayer, S.S. and Björkman, O. 1990. Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynth. Res. 23: 331–343.

    Article  CAS  Google Scholar 

  • Thayer, S.S. and Björkman, O. 1992. Carotenoid composition and deepoxidation in thylakoid pigment-protein complexes from cotton leaves and bundle-sheath cells of maize. Photosynth. Res. 33: 213–225.

    Article  CAS  Google Scholar 

  • Thornber, J.P., Peter, G.F., Morishige, D.T., Gomez, S., Anandan, S., Welty, B.A., Lee, A., Kerfeld, C., Takeuchi, T. and Preiss, S. 1993. Light harvesting in photosystems I and II. Biochem. Soc. Trans. 21: 15–18.

    PubMed  CAS  Google Scholar 

  • Ticha, I. 1982. Photosynthetic characteristics during ontogenesis of leaves. 7. Stomata density and sizes. Photosynthetica 16: 375–471.

    Google Scholar 

  • Van Hasselt, P.R., De Kok, C.J. and Kuiper, P.J. 1979. Effect of α-tocopherol, β-carotene, monogalactosyldiglyceride and phosphatidylcholine on light-induced degradation of chlorophyll in acetone. Physiol. Plant. 45: 475–479.

    Article  Google Scholar 

  • Van Oosten, J.-J. and Besford, R.T. 1996. Acclimation of photosynthesis to elevated CO2 through feedback regulation of gene expression: climate of opinion. Photosynth. Res. 48: 353–365.

    Article  Google Scholar 

  • Verhoeven, A.S., Adams W.W. III, and Demmig-Adams, B. 1996. Close relationship between the state of the xanthophyll cycle pigments and photosystem II efficiency during recovery from winter stress. Physiol. Plant. 96: 567–576.

    Article  CAS  Google Scholar 

  • Verhoeven, A.S., Demmig-Adams, B. and Adams W.W. III, 1997. Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and nitrogen stress. Plant Physiol. 113: 817–824.

    PubMed  CAS  Google Scholar 

  • Webber, A.N., Nie, G.-Y. and Long, S.P. 1994. Acclimation of photosynthetic proteins to rising atmospheric CO2. Photosynth. Res. 39: 413–425.

    Article  CAS  Google Scholar 

  • Whitmarsh, J. and Govindjee 1999. The photosynthetic process. This volume.

    Google Scholar 

  • Wise, R.R. 1995. Chilling-enhanced photooxidation. The production, action and study of reactive oxygen species produced during chilling in the light. Photosynth. Res. 45: 79–97.

    Article  CAS  Google Scholar 

  • Wong, S.C. 1979. Elevated atmospheric partial pressure of CO2 and plant growth. I. Interactions of nitrogen nutrition and photosynthetic capacity in C3 and C4 plants. Oecologia 44: 68–74.

    Article  Google Scholar 

  • Yamamoto, H.Y. 1979. The biochemistry of the violaxanthin cycle in higher plants. Pure Appl. Chem. 51: 639–648.

    Article  CAS  Google Scholar 

  • Yamamoto, H.Y. and Bassi, R. 1996. Carotenoids: localization and function. In: Ort, D.R. and C.F. Yocum (eds.) Advances in Photosynthesis Vol. 4 Oxygenic Photosynthesis: The Light Reactions, pp 539–563. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Zhang, J. and Kirkham, M.B. 1994. Drought-stress-induced changes in activities of Superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol. 35: 785–791.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Logan, B.A., Demmig-Adams, B., Adams, W.W. (1999). Acclimation of Photosynthesis to the Environment. In: Singhal, G.S., Renger, G., Sopory, S.K., Irrgang, KD., Govindjee (eds) Concepts in Photobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4832-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4832-0_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6026-4

  • Online ISBN: 978-94-011-4832-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics