Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 533))

Abstract

Frequency map analysis is a numerical method which provides a clear representation of the global dynamics of many multi-dimensional systems, and which is particularly useful for systems of 3 degrees of freedom and more. The frequency map dependence with time also allows refined estimates of the diffusion of the orbits in the frequency domain. Here are presented some applications of frequency map analysis to the special case of a quasi-periodic perturbation, and to the study of the global dynamics of a 4 dimensional symplectic mapping with definite or indefinite torsion. The convergence of the frequency analysis algorithm on KAM solutions is demonstrated, and the asymptotic value of the error is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnold V., Proof of Kolmogorov’s theorem on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian, Rus. Math. Surv. 18, N6 (1963) 9–36.

    Google Scholar 

  2. Arnold V.: Dynamical Systems IIISpringer-Verlag, Berlin ,(1988).

    Google Scholar 

  3. Chirikov, B.V., A universal instability of many dimensional oscillator systems, Physics Reports 52 (1979) 263–379.

    Article  MathSciNet  Google Scholar 

  4. Dumas, H. S., Laskar, J.: Global Dynamics and Long-Time Stability in Hamiltonian Systems via Numerical Frequency Analysis, Phys. Rev. Lett. 70, (1993), 2975–2979.

    Article  Google Scholar 

  5. Froeschlé, C., On the number of isolating integrals in systems with three degrees of freedom, Astrophys. and Space Sciences 14 (1971) 110–117.

    Article  Google Scholar 

  6. Giorgilli A., Delshams A., Fontich E., Galgani L., Simó C., Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem. J. Diff. Equa. 77 (1989) 167–198.

    Article  MATH  Google Scholar 

  7. Greene, J.M., A method for determining stochastic transitions, J. Math. Phys. 20 (1979) 1183.

    Google Scholar 

  8. Herman, M.R., Sur les courbes invariantes par les difféomorphismes de l’anneau. Volume 1, Astérisque 103–104 (1983).

    Google Scholar 

  9. Herman, M.R.: Dynamics connected with indefinite normal torsion, preprint, (1990).

    Google Scholar 

  10. Knezevic, Z., and Milani, A: Asteroid proper elements: the big picture, in Symposium IAU 160, A. Milani, M. Di Martino, A. Cellino, eds, (1994), 31–44, Kluwer, Dordrecht.

    Google Scholar 

  11. Kolmogorov, A.N.: 1954, On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian Dokl. Akad. Nauk. SSSR, 98, (1954), 469.

    MathSciNet  Google Scholar 

  12. Laskar, J., Secular evolution of the solar system over 10 million years, Astron. Astrophys. 198 (1988) 341–362.

    Google Scholar 

  13. Laskar, J.: The chaotic motion of the solar system. A numerical estimate of the size of the chaotic zones, Icarus, 88, (1990), 266–291.

    Article  Google Scholar 

  14. Laskar, J., Frequency analysis for multi-dimensional systems. Global dynamics and diffusion, Physica D 67 (1993) 257–281.

    Article  MathSciNet  MATH  Google Scholar 

  15. Laskar, J., Frequency map analysis of an Hamiltonian system, Workshop on Non-Linear dynamics in Particle accelerators, Arcidosso sept. 1994, (1995) AIP Conf. Proc., 344, 130–159.

    Google Scholar 

  16. Laskar, J., Froeschlé, C., Celletti, A., The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping, Physica D, 56, (1992) 253–269.

    Article  MathSciNet  MATH  Google Scholar 

  17. Laskar, J. Robutel, P.: The chaotic obliquity of the planets, Nature, 361, (1993), 608–612.

    Article  Google Scholar 

  18. Laskar, J., Joutel, F., Robutel, P., Stabilization of the Earth’s obliquity by the Moon, Nature 361 (1993) 615–617.

    Article  Google Scholar 

  19. McGill C., Binney, J.: Torus construction in general gravitational potentials, Mon. Not. R. astr. Soc., 244, (1990) 634–645.

    MATH  Google Scholar 

  20. morbidelli, A.: Asteroid secular resonant proper elements, Icarus, 105, (1993), 48–66.

    Article  Google Scholar 

  21. Morbidelli, A., Giorgilli, A.: Superexponential stability of KAM tori, J. Stat. Phys. 78, (1995) 1607–1617.

    Article  MathSciNet  MATH  Google Scholar 

  22. J.K. Moser, Nachr. Akad. Wiss. Göttmgen, Math. Phys. Kl. II (1962), 1–20.

    Google Scholar 

  23. Nekhoroshev, N.N.: An exponential estimates for the time of stability of nearly iutegrable Hamiltonian systems, Russian Math. Surveys, 32, (1977), 1–65.

    Article  MATH  Google Scholar 

  24. Nekhoroshev, N.N.: An exponential estimates for the time of stability of nearly iutegrable Hamiltonian systems, Russian Math. Surveys, 32, (1977), 1–65.

    Article  MATH  Google Scholar 

  25. Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste, tomes I-III, Gauthier Villard, Paris, (1892–1899), reprinted by Blanchard, 1987.

    Google Scholar 

  26. J. Pöschel: Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math. 25 (1982). 653–695.

    Article  Google Scholar 

  27. Schwartz, L.: Analyse, t. II. Calcul différentiel et équations différentielles, Hermann, Paris, 1992.

    Google Scholar 

  28. R.L. Warnock and R.. D. Ruth, Long-term hounds on nonlinear Hamiltonian motion, Physica D 56 (1992) 188–215.

    Article  MathSciNet  MATH  Google Scholar 

  29. Wisdom, J., Chaotic behaviour and the origine of the 3/1 Kirkwood gap, carus 56 (1983) 51–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Laskar, J. (1999). Introduction to Frequency Map Analysis. In: Simó, C. (eds) Hamiltonian Systems with Three or More Degrees of Freedom. NATO ASI Series, vol 533. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4673-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4673-9_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5968-8

  • Online ISBN: 978-94-011-4673-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics