Skip to main content

Cation-Responsive Fluorescent Sensors

Understanding of structural and environmental effects

  • Chapter
Chemosensors of Ion and Molecule Recognition

Part of the book series: NATO ASI Series ((ASIC,volume 492))

Abstract

Various examples of charge-transfer fluorescent probes for cation sensing are described. These probes are based on cation control of charge transfer in a conjugated donor-acceptor fluorophore, the bound cation interacting with either the electron-donating group or the electron-withdrawing group. Special attention is paid to the understanding of cation-induced photophysical changes in a crowned merocyanine, crown-ether-linked coumarins, 8-quinolinol and its derivatives. It is emphasized that when the cation interacts with the electron-donating group, there is a photodisruption of the interaction between the cation and this group, leading to possible photorelease of the cation. Optical sensors based on the entrapment of fluorescent indicators of pH (eosin Y) and potassium (PBFI) in sol-gel thin films are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Czarnik, A.W. (ed.) (1992) Fluorescent chemosensors for ion and molecule recognition, A.C.S. Symposium series 538, American Chemical Society, Washington DC.

    Google Scholar 

  2. Lakowicz, J.R. (ed.) (1994) Topics in fluorescence spectroscopy, Volume 4: Probe design and chemical sensing, Plenum Press, New-York.

    Google Scholar 

  3. Seitz, W.R. (1984) Chemical sensors based on fiber optics. Anal. Chem. 56, 16A–34A.

    CAS  Google Scholar 

  4. Wolfbeis, O. S. (1988) Fiber optical fluorosensors in analytical and clinical chemistry, in S.G. Schulman (ed.), Molecular Luminescence Spectroscopy, Methods and Applications: Part 2, Wiley &Sons, New York, pp. 129–281.

    Google Scholar 

  5. Wolfbeis, O. S. (ed.)(1991), Fiber Optic and Chemical Sensors and Biosensors, vols. 1&2, CRC Press, Boca Raton, Florida.

    Google Scholar 

  6. Janata, J. (1992) Ion optodes, Anal. Chem. 64, 921A–927A.

    Article  CAS  Google Scholar 

  7. Arnold, M. (1992) Fiber-optic chemical sensors, Anal. Chem. 64, 1015A–1025A.

    CAS  Google Scholar 

  8. Valeur, B. (1994) Principles of fluorescent probe design for ion recognition, in Lakowicz, J.R. (ed.) Topics in fluorescence spectroscopy, Volume 4: Probe design and chemical sensing, Plenum Press, New-York, pp. 21–48.

    Google Scholar 

  9. Valeur B., Bourson, J., and Pouget J. (1992) Ion recognition detected by changes in photoinduced charge or energy transfer, in Czarnik, A.W. (ed.), Fluorescent chemosensors for ion and molecule recognition, A.C.S. Symposium series 538, American Chemical Society, Washington DC, 25–44.

    Google Scholar 

  10. Rettig W., and Lapouyade R. (1994) Fluorescence probes based on twisted intramolecular charge transfer (TICT) states and other adiabatic photoreactions, in Lakowicz, J.R. (ed.) Topics in fluorescence spectroscopy, Volume 4: Probe design and chemical sensing, Plenum Press, New-York, pp. 109–149.

    Google Scholar 

  11. Bourson, J., and Valeur B. (1989) Ion-responsive fluorescent compound. 2. Cation-steered intramolecular charge transfer in a crowned merocyanine J. Phys. Chem. 93, 3871–3876.

    Article  CAS  Google Scholar 

  12. Létard, J.F., Lapouyade, R., and Rettig, W. (1993) Synthesis and photophysical study of 4-(N-monoaza-15-crown-5) stilbenes forming TICT states and their complexation with cations, Pure Appl. Chem. 65, 1705–1712.

    Article  Google Scholar 

  13. Mateeva, N., Enchev, Antonov, L., Deligeorgiev, T., and Mitewa, M.(1995) Spectroscopic study of the complcxation of an aza-15-crown-5 containing chromofluoroionophore with Ba2+ and Ca2+ cations J. Incl. Phenom. 93, 323–333.

    Google Scholar 

  14. Martin, M.M., Plaza, P., Dai Hung, N., Meyer, Y.H., Bourson, J., and Valeur, B (1993) Photoejection of cations from complexes with a crown-ether-linked merocyanine evidenced by ultrafast spectroscopy, Chem. Phys. Lett. 202, 425–430.

    Article  CAS  Google Scholar 

  15. Martin, M.M., Plaza, P., Meyer, Y.H., Bégin L., Bourson, J., and Valeur, B. (1994) A new concept of photogeneration of cations. Evidence for photoejection of Ca2+ and Ii+ from complexes with a crown-ether-linked merocyanine by picosecond spectroscopy, J. Fluorescence 4, 271–273.

    Article  CAS  Google Scholar 

  16. Martin, M.M., Plaza, P., Meyer, Y.H., Badaoui, F., Bourson, J., Lefèvre, J.P., and Valeur, B. (1994) Steady-state and picosecond spectroscopy of Li+ and Ca2+ complexes with a crowned merocyanine. Reversible photorelease of cations, J. Phys. Chem. 100, 6879–6888.

    Article  Google Scholar 

  17. Dumon, P., Jonusauskas, G., Dupuy, F., Pée, Ph., Rullière, C., Létard, J.F., and Lapouyade, R. (1994) Picosecond dynamics of cation-macrocycle interactions in the excited state of an intrinsic fluorescence probe: the calcium complex of 4-(N-monoaza-15-crown-5)-4′-phenylstilbene, J. Phys. Chem., 98, 10391–10396.

    Article  CAS  Google Scholar 

  18. Mathevet, R., Jonusauskas, G., Létard, J.F., and Lapouyade R. (1995) Picosecond transient absorption as monitor of the stepwise cation-macrocycle decoordination in the excited singlet state of 4-(N-monoaza-15-crown-5)-4′-cyanostilbène, J. Phys. Chem. 99, 15709–15713.

    Article  CAS  Google Scholar 

  19. Druzhinin, S.I., Rusalov, M.V., Uzhinov, B.M., Alfimov, M.V., Gromov, S.P., and Fedorova, O.A. (1995) Excited state relaxation processes of crowned styryl dyes and their metal complexes, Proc. Indian Acad. Sci. 107, 721–727.

    CAS  Google Scholar 

  20. Haugland, R.P. (1994) Handbook of fluorescent probes and research chemicals, Molecular Probes Inc., Eugene, OR, U.S.A.

    Google Scholar 

  21. Meuwis, K., Boens, N., De Schryver, F.C., Gallay, J., and Vincent, M. (1995) Photophysics of the fluorescent K+ indicator PBFI, Biophys. J. 68, 2469–2473.

    Article  CAS  Google Scholar 

  22. Gutman, M. and Huppert, D. (1979) Rapid pH and DmH+ jump by short laser pulse, J. Biochem. Biophys. Meth. 1, 9–19.

    Article  CAS  Google Scholar 

  23. Gutman, M., Huppert, D., and E. Pines (1981) A rapid modulation of pH of aqueous solutions by a laser pulse, J. Am. Chem. Soc. 103, 3709–3713.

    Article  CAS  Google Scholar 

  24. Adams, S.R., Kao, J.P.Y., Grynkiewicz, G., Minta, A., and Tsien, R.Y. (1988) Biologically useful chelators that release Ca2+ upon illumination, J. Am. Chem. Soc. 110, 3212–3220.

    Article  CAS  Google Scholar 

  25. Kaplan, J. H., and Ellis-Davies, G.C.R. (1988) Photolabile chelators for the rapid photorelease of divalent cations, Proc. Natl. Acad. Sci. USA, 85, 6571–6575.

    Article  CAS  Google Scholar 

  26. Warmuth, R., Grell, E., Lehn, J.-M., Bats, J.W., and Quinkert, G. (1991) Photo-cleavable cryptands: synthesis and structure, Helv. Chim. Acta 74, 671–681.

    Article  CAS  Google Scholar 

  27. Grynkiewicz, G., Poenie, M., and Tsien, R.Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem. 260, 3440–3450.

    CAS  Google Scholar 

  28. Van den Bergh, V., Boens, N., De Schryver, F.C., Ameloot, M., Steels, P., Gallay, J., Vincent, M., and Kowalczyk, A. (1995) Photophysics of the fluorescent Ca2+ indicator Fura-2, Biophys. J. 68, 1110–1119.

    Article  Google Scholar 

  29. Bourson, J., Borrel, M.-N., and Valeur, B. (1992) Ion-responsive fluorescent compounds. 3. Cation complexation with coumarin 153 linked to monoaza-15-crown-5, Anal. Chim. Acta 257, 189–193.

    Article  CAS  Google Scholar 

  30. Bourson, J., Pouget, J., and Valeur, B. (1993) Ion-responsive fluorescent compounds. 4. Effect of cation binding on the photophysical properties of a coumarin linked to monoaza-and diaza-crown ethers, J. Phys. Chem. 97, 4552–4557.

    Article  CAS  Google Scholar 

  31. Bourson, J., Badaoui, F. and Valeur, B. (1994) Coumarinic fluorescent chemosensors for the detection of transition metal ions, J. Fluorescence 4, 275–277.

    Article  CAS  Google Scholar 

  32. Badaoui, F. and Bourson, J. (1995) Chromoionophores derived from a coumarin linked to monoaza-and diaza-crown ethers: formation of divalent 3d metal complexes, Anal. Chim. Acta 302, 341–354.

    Article  CAS  Google Scholar 

  33. R. A. Bissell, A. Prasanna de Silva, H. Q. Nimal Gunaratne, P. L. Mark Lynch, G. E. M. Maguire, C. P. McCoy, and K. R. A. Samankumara Sandanayake (1993) Fluorescent PET (Photoinduced Electron Transfer) sensors, Top. Curr. Chem. 168, 223–264.

    Article  CAS  Google Scholar 

  34. Soroka, K., Vithanage, R.S., Phillips, D.A., Walker, B., and Dasgupta, P.K. (1987) Fluorescence properties of metal complexes of 8-hydroxyquinoline-5-sulfonic acid and Chromatographic applications, Anal. Chem. 59, 629–636.

    Article  CAS  Google Scholar 

  35. Ballard, R.E., and Edwards, J.W. (1964) Protopropic equilibrium and fluorescence of some 8-hydroxyquinoline derivatives, J. Chem. Soc., 4868-4874.

    Google Scholar 

  36. Bardez, E., Chatelain, A., Larrey, B, and Valeur, B (1994) Photoinduced coupled proton and electron transfers. 1. 6-Hydroxyquinoline, J. Phys. Chem. 98, 2357–2366.

    Article  CAS  Google Scholar 

  37. Phillips, D.A., Soroka, K., Vithanage, R.S., and Dasgupta, P.K. (1986) Enhancement and quenching of fluorescence of metal chelates of 8-hydroxyquinoline-5-sulfonic acid, Mikrochim. Acta. I, 207–220.

    Article  Google Scholar 

  38. Prat, M.D., Compano, R., Beltran, J.L., and Codony, R. (1994) Fluorescence of metal complexes of 8-hydroxyquinoline derivatives in aqueous micellar media, J. Fluorescence 4, 279–281.

    Article  CAS  Google Scholar 

  39. Hiratani, K. (1987) Drastic change in fluorescence intensity of acyclic polyethers caused by addition of lithium ion, J. Chem. Soc., Chem. Commun., 960.

    Google Scholar 

  40. Weber, E. and Vögtle, F.M. (1992) Kristalline 1:1-alkalimetallcomplexe nichtcyclischer neutralliganden. Tetrahedron Lett. 29, 2415–2418.

    Google Scholar 

  41. Wolfbeis, O.S. and Offenbacher, H. (1984) The effects of alkali cation complexation on the fluorescence properties of crown-ethers, Monat. Chem. 115, 647–654.

    Article  CAS  Google Scholar 

  42. Zhujun, Z. and Seitz, W.R. (1985) A fluorescent sensor for aluminium(III), magnesium(II), zinc(II) and cadmium(II) based on electrostatically immobilized quinolin-8-ol sulfonate. Anal. Chim. Acta 171, 251–258.

    Article  CAS  Google Scholar 

  43. Zusman, R., Rottman, C., Ottolenghi, M., and Avnir, D. (1990) Doped sol-gel glasses as chemical sensors, J. Non-Cryst. Solids 122, 107–109.

    Article  CAS  Google Scholar 

  44. (a) Lee, J.E. and Saavedra, S. (1994) Evanescent sensing in doped sol-gel glass films. Anal. Chim. Acta 285, 265–269. (b) Yang, L. and Saavedra, S. (1995) Chemical sensing using sol-gel derived planar waveguides and indicator phases, Anal. Chem. 67, 1307-1314.

    Article  CAS  Google Scholar 

  45. Ding, J.Y., Shahriari, M.R., and Sigel, G.H. (1991) Fiber optic pH sensors prepared by sol-gel immobilisation technique Electron. Lett. 27, 1560–1562.

    Article  CAS  Google Scholar 

  46. Kubeckova, M., Pospisilova, M., and Matejec, V. (1994) Thin films sensitive to pH changes prepared by sol-gel method, J. Sol-gel. Sci. Technol. 2, 591–593.

    Article  CAS  Google Scholar 

  47. MacCraith, B.D., Ruddy, V., Potter, C., O’Kelly, B., and McGilp, J.F. (1991) Optical waveguide sensor using evanescent wave excitation of fluorescent dye in sol gel glass, Electron. Lett. 27, 1247–1248.

    Article  CAS  Google Scholar 

  48. Wolfbeis, O.S., Rodriguez, N.V., and Werner T. (1992) LES-compatible fluorosensor for measurement of near-neutral pH values, Mikrochim. Acta 108, 133–141.

    Article  CAS  Google Scholar 

  49. Boutin, P., Mugnier, J., and Valeur B. (1996) A fast-responding optical pH sensor based on the fluorescence of eosin trapped in a TiO2 sol-gel thin film, J. Fluorescence (in press).

    Google Scholar 

  50. Bahtat, M., Mugnier, J., Bahtat, A., and Serughelti, J. (1993) Evolution des propriétés des guides d’ondes plans de TiO2 élaborés à 100 °C par la méthode sol-gel. Journées Nationales d’Optique Guidée, Marseille (France).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Valeur, B. et al. (1997). Cation-Responsive Fluorescent Sensors. In: Desvergne, J.P., Czarnik, A.W. (eds) Chemosensors of Ion and Molecule Recognition. NATO ASI Series, vol 492. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3973-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3973-1_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5759-2

  • Online ISBN: 978-94-011-3973-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics