Skip to main content

Carotenoid-Induced Electronic Relaxation of the First Excited State of Antenna Chlorophylls

  • Chapter
Photosynthesis: Mechanisms and Effects

Abstract

Numerous interactions come into play when a carotenoid (Car) and a chlorophyll (Chl) become juxtaposed during the assembly of various pigment-bearing proteins which carry out photosynthesis, and it is widely held that these interactions are crucial to the functioning of the photosynthetic apparatus (1). The manifold roles of photosynthetic Car’s include light-harvesting (Car-to-Chl transfer of singlet excitation energy), photoprotection (which entails quenching of triplet Chl and of singlet oxygen), and involvement in the assembly of LHCII (the Chla/b light-harvesting complex associated with photosystem II of green plants). Recently, the three xanthophylls in LHCH—lutein (Lut), neoxanthin (Neo), and violaxanthin (Vio)—were credited with yet another function (2,3), the quenching of Chla*, where the asterisk signifies occupation of S1, the lowest electronically excited state of singlet spin multiplicity. The Car-induced quenching, since it lowers the fluorescence yield as well as the triplet formation yield, has been called catalysed internal conversion (CIC). Without touching upon the mechanism which brings CIC into operation, it was proposed that (i) as monomers form trimers, and these in turn aggregate, quenching of the first excited singlet state of Chla by the Xan’s bound to LHCII becomes increasingly important, and (ii) quenching of this type, effected through the modulation of the state of aggregation of the complexes in thylakoid membranes, serves to regulate the dissipation of the excitation energy in chloroplasts, thereby protecting plants against excessive irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Frank, H.A. and Cogdell, R.J. (1996) Photochem. Photobiol. 63, 257–264.

    Article  CAS  PubMed  Google Scholar 

  2. Razi Naqvi, K., Melø, T.B., Bangar Raju, B., T. Jávorfi, Simidjiev, I. and Garab, G. (1997) Spectrochim. Acta Part A 53, 2659–2667.

    Article  Google Scholar 

  3. Razi Naqvi, K, Jávorfi, T., Melø, T.B. and Garab, G. (1998) Spectrochim. Acta Part A (in press).

    Google Scholar 

  4. Kühlbrandt, W., Wang, D.N. and Fujiyoshi, Y. (1994) Nature 367, 614–621.

    Article  PubMed  Google Scholar 

  5. Razi Naqvi, K., Melø, T.B. and Bangar Raju, B. (1997) Spectrochim. Acta Part A 53, 2229–2234.

    Article  Google Scholar 

  6. Nechushtai, R., Thornber, J.P., Patterson, L.K., Fessenden, R.W. and Levanson, H. (1988) J. Phys. Chem. 92, 1165–1168.

    Article  CAS  Google Scholar 

  7. Barzda, V., Peterman, E.J.G., Van Grondelle, R. and Van Amerongen, H. (1998) Biochemistry 37, 546–551 (and earlier work cited therein).

    Article  CAS  PubMed  Google Scholar 

  8. Van der Vos, R., Carbonera, D. and Hoff, A.J. (1991) App. Mag. Res. 2, 179–202.

    Article  Google Scholar 

  9. Michel, C., Razi Naqvi, K. and Melø, T.B. (1998) Spectrochim. Acta Part A 54, 719–726.

    Article  Google Scholar 

  10. Angerhofer. A., Bornhäuser, F., Gall, A. and Cogdell, R.J. (1995) Chem. Phys. 194, 259–274.

    Article  CAS  Google Scholar 

  11. Butler, P.J.G. and Kühlbrandt, W. (1988) Proc. Natl. Acad. Sci. USA 85, 3797–3801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruban, A.V. and Horton, P. (1992) Biochim. Biophys. Acta 1102, 30–38.

    Article  CAS  Google Scholar 

  13. Ruban, A.V., Horton, P. and Robert, B. (1995) Biochemistry 34, 2333–2337.

    Article  CAS  PubMed  Google Scholar 

  14. Razi Naqvi, K., Bangar Raju, B., Jávorfi, T. and Garab, G. (1997) Spectrochim. Acta Part A 53, 1925–1936.

    Article  Google Scholar 

  15. Van der Vos, R., Franken, E.M. and Hoff, A.J. (1994) Biochim. Biophys. Acta 1188, 243–250.

    Article  CAS  Google Scholar 

  16. Bassi, R., Silversti, M., Dainese, P., Moya, I. and Giacometti, G.M. (1991) J. Photochem. Photobiol. B: Biol. 9, 335–354.

    Article  CAS  Google Scholar 

  17. Gust, D., Moore, T.A., Moore, A.L., Devadoss, C., Liddell, P.A., Hermant, R., Nieman, R.A., Demanche, L.J., DeGraziano, J.M., Gouni, I. (1992) J. Am. Chem. Soc. 114, 3590–3603 (and earlier work cited therein).

    Article  CAS  Google Scholar 

  18. Osuka, A., Shinoda, S., Marumo, S., Yamada, H., Katoh, T., Yamazaki, I., Nishimura, Y., Tanaka, Y., Taniguchi, S., Okada, T., Nozaki, K. and Ohno T. (1995) Bull. Chem. Soc. Japan 68, 3255–3268.

    Article  CAS  Google Scholar 

  19. Osuka, A. and Kume, T. (1998) Tetrahedron Lett. 39, 655–658 (and references therein).

    Article  Google Scholar 

  20. Snyder, R., Arvidson, E., Goote, C., Harrigan, L. and Christensen, R.L. (1985) J. Am. Chem. Soc. 107, 4117–4122.

    Article  CAS  Google Scholar 

  21. Owens, T.G., Shreve, A.P. and Albrecht, A. (1992) in Research in Photosynthesis (Murata, N., ed.) Vol. 1, pp. 179–186, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  22. Young, A.J. and Frank, H.A. (1996) J. Photochem. Photobiol. B: Biol. 36, 3–15.

    Article  CAS  Google Scholar 

  23. Cogdell, R.J., Hipkins, M.F., MacDonald, W. and Truscott, T.G. (1981) Biochim. Biophys. Acta 634, 191–202.

    Article  CAS  PubMed  Google Scholar 

  24. Kawaoka, K., Khan, A.U. and Kearns, D.R. (1967) J. Chem. Phys. 46, 1842–1853.

    Article  CAS  Google Scholar 

  25. Hoytink, G.J. (1969) Acc. Chem. Res. 2, 114–119

    Article  CAS  Google Scholar 

  26. Gijzeman, O.L.J., Kaufman, F. and Porter, G. (1973) J. Chem.Soc. Faraday II 69, 727–737.

    Article  CAS  Google Scholar 

  27. Gijzeman, O.L.J. (1974) J. Chem. Soc. Faraday II 70, 1143–1152.

    Article  CAS  Google Scholar 

  28. Davydov, A.S. (1965) Quantum Mechanics, pp. 330–333, Pergamon, Oxford, UK.

    Google Scholar 

  29. Wasielewski, M.R., Johnson, D.G., Niemczyk, M.P., Gaines, G.L., O’Neil, M.P. and Svec, W.A. (1990) J. Am. Chem. Soc. 112, 6482–6488.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Naqvi, K.R. (1998). Carotenoid-Induced Electronic Relaxation of the First Excited State of Antenna Chlorophylls. In: Garab, G. (eds) Photosynthesis: Mechanisms and Effects. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3953-3_62

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3953-3_62

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5547-2

  • Online ISBN: 978-94-011-3953-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics