Skip to main content

Biodegradation of lignin-carbohydrate complexes

  • Chapter
Physiology of Biodegradative Microorganisms

Abstract

Covalent lignin-carbohydrate (LC) linkages exist in lignocellulose from wood and groups herbaceous plants. In wood, they consist of ester and ether linkages through sugar hydroxyl to the α-carbanol of phenylpropane subunits in lignin. In grasses, ferulic and p-coumaric acids are esterified to hemicelluloses and lignin, respectively. Hemicelluloses also contain substituents and side groups that restrict enzymatic attack. Water-soluble lignin-carbohydrate complexes (LCCs) often precipitate during digestion with polysaccharidases, and the residual sugars are more diverse than the bulk hemicellulose. A number of microbial esterases and hemicellulose polysaccharidases including acetyl xylan esterase, ferulic acid esterase, and p-coumaric esterase attack hemicellulose side chains. Accessory hemicellulases include α-L-arabinofuranosidase and α-methyl-glucuranosidase. Both of these side chains are involved in LC bonds. β-Glucosidase will attach sugar residues to lignin degradation products and when carbohydrate is attached to lignin, lignin peroxidase will depolymerize the lignin more readily.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adhi TP, Korus RA & Crawford DL (1989) Production of major extracellular enzymes during lignocellulose degradation by two Streptomyces in agitated submerged culture. Appl. Environ. Microbiol. 55: 1165–1168.

    PubMed  CAS  Google Scholar 

  • Akin DE, & Rigsby LL (1985) Influence of phenolic acids on rumen fungi. Agronomy J. 77: 180–182.

    CAS  Google Scholar 

  • Atushi K, Azuma J-I & Koshijima T (1984) Lignin-carbohydrate complexes and phenolic acids in bagasse. Holzforschung 38: 141–149.

    Article  Google Scholar 

  • Azuma J-I & Koshijima T (1988) Lignin-carbohydrate complexes from various sources. Methods Enzymology 161:12–18

    Article  CAS  Google Scholar 

  • Azuma J-I, Takahashi N & Koshijima T (1981) Isolation and characterization of lignin-carbohydrate complexes from the milled-wood lignin fraction of Pinus densiflora Sieb et Zucc. Carbohyd. Res. 93: 91–104.

    Article  CAS  Google Scholar 

  • Biely P, Krátky Z & Vrsanská M (1981) Substrate-binding site of endo-1,4-β-xylanase of the yeast Cryptococcus albidus. Eur. J. Biochem. 119: 559–564.

    Article  PubMed  CAS  Google Scholar 

  • Biely P, Puls J & Schneider H (1985) Acetyl xylan esterases in fungal xylanolytic systems. FEBS 186: 80–84.

    Article  CAS  Google Scholar 

  • Biely P, MacKenzie CR, Puls J & Schneider H (1986) Cooper-ativity of esterases and xylanases in the enzymatic degradation of acetyl xylan. Bio/Technology 4: 731–733.

    Article  CAS  Google Scholar 

  • Borneman WS, Hartley RD, Morrison WH, Akin DE & Ljungdahl LG (1990) Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Appl. Microbiol. Biotechnol. 33: 345–351.

    Article  CAS  Google Scholar 

  • Brice RE & Morrison IM (1982) The degradation of isolated hemicelluloses and lignin-hemicellulose complexes by cell-free rumen hemicellulases. Carbohyd. Res. 101: 93–100.

    Article  CAS  Google Scholar 

  • Broda PMA, Mason JC & Zimmerman WK (1987) Decomposition of lignocellulose. International Patent WO 87/0660

    Google Scholar 

  • Chauvet J-M, Comtat J & Noe P (1987) Assistance in bleaching of never-dried pulps by the use of xylanases: Consequences on pulp properties. 4th Intl. Symp. Wood Pulping Chem. (Paris), Poster Presentations Vol 2: 325–327.

    Google Scholar 

  • Chesson A (1988) Lignin-polysaccharide complexes of the plant cell wall and their effect on microbial degradation in the rumen. Animal Feed Sci. Technol. 21: 219–228.

    Article  CAS  Google Scholar 

  • Chesson A, Gordon AH & Lomax JA (1983) Substituent groups linked by alkali-labile bonds to arabinose and xylose residues of legume, grass and cereal straw cell walls and their fate during digestion by rumen microorganisms. J. Sci. Food. Agric. 34: 1330–1340.

    Article  CAS  Google Scholar 

  • Comtat J, Joseleau J-P, Bosso C & Barnoud (1974) Characterization of structurally similar neutral and acidic tetrasaccharides obtained from the enzymic hydrolysate of a 4-O-methyl-D-glucurono-D-xylan. Carbohyd. Res. 38:217–224.

    Article  CAS  Google Scholar 

  • Conchie J, Hay AJ & Lomax JA (1988) Soluble lignin-carbohydrate complexes from sheep rumen fluid: Their composition and structural features. Carbohyd. Res. 177: 127–151.

    Article  CAS  Google Scholar 

  • Crawford D (1978) Lignocellulose decomposition by selected Streptomyces strains. Appl. Environ. Microbiol. 35: 1041–1045.

    PubMed  CAS  Google Scholar 

  • Crawford DL, Pometto AL & Crawford RL (1983) Lignin degradation by Streptomyces viridosporus: Isolation and characterization of a new polymeric lignin degradation intermediate. Appl. Environ. Microbiol. 45: 898–904.

    PubMed  CAS  Google Scholar 

  • Donnelly PK & Crawford DL (1988) Production by Streptomyces viridosporus T7A of an enzyme which cleaves aromatic acids from lignocellulose. Appl. Environ. Microbiol. 54: 2237–2244.

    PubMed  CAS  Google Scholar 

  • Deobald LE & Crawford DL (1987) Activities of cellulase and other extracellular enzymes during lignin solubilization by Streptomyces viridosporus. Appl. Microbiol. Biotechnol. 26: 158–163.

    Article  CAS  Google Scholar 

  • Ericksson Ö, Goring DAI & Lindgren BO (1980) Structural studies on the chemical bonds between lignins and carbohydrates in spruce wood. Wood Sci. Technol. 14: 267–279..

    Article  Google Scholar 

  • Ford CW (1989) A feruloylated arabinoxylan liberated from cell walls of Digitaria decumbens (pangola grass) by treatment with borohydride. Carbohyd. Res. 190: 137–144.

    Article  CAS  Google Scholar 

  • Gaillard BDE & Richards GN (1975) Presence of soluble lignin-carbohydrate complexes in the bovine rumen. Carbohyd. Res. 42: 135–145.

    Article  CAS  Google Scholar 

  • Higuchi T, Ioto Y, Shimada M & Kawamura I (1967) Chemical properties of milled wood lignin of grasses. Phytochemistry 6: 1551–1556.

    Article  CAS  Google Scholar 

  • Ishihara M & Shimizu K (1988) α-(1 → 2)-glucuronidase in the enzymatic saccharification of hardwood xylan I. Screening of α-glucuronidase producing fungi. Mokuzai Gakkaishi 34: 58–64.

    CAS  Google Scholar 

  • Ishii T & Hiroi T (1990) Isolation and characterization of feruloylated arabinoxylan oligosaccharides from bamboo shoot cell-walls. Carbohyd. Res. 196: 175–183.

    Article  CAS  Google Scholar 

  • Iversen T, Westermark U & Samuelsson B (1987) Some comments on the isolation of galactose-containing lignin-carbohydrate complexes. Holzforschung 41: 119–121.

    Article  CAS  Google Scholar 

  • Jeffries TW, Choi S & Kirk TK (1981) Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 42: 290–296.

    PubMed  CAS  Google Scholar 

  • Johnson KG, Harrison BA, Schneider H, MacKenzie CR & Fontana JD (1988) Xylan-hydrolyzing enzymes from Streptomyces spp. Enzyme Microb. Technol. 10: 403–409.

    Article  CAS  Google Scholar 

  • Joseleau J-P, & Gancet C (1981) Selective degradations of the lignin-carbohydrate complex from aspen wood. Svensk Papperstidning 84: R123–R127

    CAS  Google Scholar 

  • Jurasek L & Paice MG (1988) Biological beaching of pulp (pp 11–13). Tappi Internat. Pulp Bleach. Conf., Orlando, Florida

    Google Scholar 

  • Kaji A (1984) L-Arabinosidases. Advan. Carbohyd. Chem. Biochem. 42: 383–394.

    Article  CAS  Google Scholar 

  • Kantelinen A, Rättö M, Sundquist J, Ranua M, Viikari L & Linko M (1988) Hemicellulases and their potential role in bleaching (pp 1–9). Tappi Internat. Pulp Bleaching Conf., Orlando, Florida

    Google Scholar 

  • Kato A, Azuma JI & Koshijima T (1987) Isolation and identification of a new feruloylated tetrasaccharide from bagasse lignin-carbohydrate complex containing phenolic acid. Agric. Biol. Chem. 51: 1691–1693.

    Article  CAS  Google Scholar 

  • Khan AW, Lanm KA & Overend RP (1990) Comparison of natural hemicellulose and chemically acetylated xylan as substrates for the determination of acetyl-xylan esterase activity in Aspergilli. Enzyme Microb. Technol. 12: 127–131.

    Article  CAS  Google Scholar 

  • Kirk TK, Connors WJ, Bleam RD, Hackett WF & Zeikus JG (1975) Preparation and microbial decomposition of synthetic [14C] lignins. Proc. Natl. Acad. Sci. U.S.A. 72: 2515–2519.

    Article  PubMed  CAS  Google Scholar 

  • Kirk TK, Connors WJ & Zeikus JG (1976) Requirement for a growth substrate during lignin decomposition by two wood-rotting fungi. Appl. Environ. Microbiol. 32: 192–194.

    PubMed  CAS  Google Scholar 

  • Kivaisi AK, Op den Camp HJM, Lubberding HJ, Boon JJ & Vogels GD (1990) Generation of soluble lignin-derived compounds during degradation of barley straw in an artificial rumen reactor. Appl. Microbiol. Biotechnol. 33: 93–98.

    Article  CAS  Google Scholar 

  • Kondo R & Imamura H (1987) The formation of model glyco-sides by wood-rotting fungi. Lignin enzymatic and microbial degradation. INRA, Paris

    Google Scholar 

  • Kondo R & Imamura H (1989a) Formation of lignin model xyloside in polysaccharides media by wood-rotting fungi. Mokuzai Gakkaishi 35: 1001–1007.

    CAS  Google Scholar 

  • Kondo R & Imamura H (1989b) Model study on the role of the formation of glycosides in the degradation of lignin by wood-rotting fungi. Mokuzai Gakkaishi 35: 1008–1013.

    CAS  Google Scholar 

  • Kondo R, Imori T & Imamura H (1988) Enzymatic synthesis of glucosides of monomeric lignin compounds with commercial β-glucosidase. Mokuzai Gakkaishi 34: 724–731.

    CAS  Google Scholar 

  • Kondo R, Imori T, Imamura H & Kishida T (1990) Polymerization of DHP and depolymerization of DHP glucoside by lignin oxidizing enzymes. J. Biotechnol. 13: 181–188.

    Article  CAS  Google Scholar 

  • Koshijima T, Watanabe T & Yaku T (1989) Structure and properties of the lignin-carbohydrate complex polymer as an amphipathic substance. In: Glasser WG & Sarkanen S (Eds) Lignin Properties and Materials. ACS Symposium Ser. 397 (pp 11–28). American Chemical Society, Washington, D.C.

    Chapter  Google Scholar 

  • Lee H, To RJB, Latta RK, Biely P & Schneider H (1987) Some properties of extracellular acetylxylan esterase produced by the yeast Rhodotorula mucilaginosa. Appl. Environ. Microbiol. 53: 2831–2834.

    PubMed  CAS  Google Scholar 

  • MacKenzie CR & Bilous D (1988) Ferulic acid esterase activity from Schizophyllum commune. Appl. Environ. Microbiol. 54: 1170–1173.

    PubMed  CAS  Google Scholar 

  • MacKenzie CR, Bilous D, Schneider H & Johnson KG (1987) Induction of cellulolytic and xylanolytic enzyme systems in Streptomyces spp. Appl. Environ. Microbiol. 53: 2835–2839.

    PubMed  CAS  Google Scholar 

  • Markwalder HU & Neukom H (1976) Diferulic acid as a possible crosslink in hemicelluloses from wheat germ. Phytochemistry 15: 836–837.

    Article  CAS  Google Scholar 

  • Mason JC, Richards M, Zimmerman W & Broda P (1988) Identification of extracellular proteins from actinomycetes responsible for the solubilization of lignocellulose. Appl. Microbiol. Biotechnol. 28: 276–280.

    CAS  Google Scholar 

  • Mason JC, Birch OM & Broda P (1990) Preparation of 14C-radiolabelled lignocelluloses from spring barley of differing maturities and their solubilization by Phanerochaete chrysosporium and Streptomyces cyanus. J. Gen. Microbiol. 136: 227–232.

    Article  CAS  Google Scholar 

  • McCarthy AJ, MacDonald MJ, Paterson A & Broda P (1984) Degradation of [14C] lignin-labelled wheat lignocellulose by white-rot fungi. J. Gen. Microbiol. 130: 1023–1030.

    CAS  Google Scholar 

  • McCarthy AJ, Paterson A & Broda P (1986) Lignin solubilization by Thermonospora mesophila. Appl. Microbiol. Biotechnol. 24: 347–352.

    Article  CAS  Google Scholar 

  • McDermid KP, MacKenzie CR & Forsberg CW (1990) Esterase activities of Fibrobacter succinogenes subsp Succinogenes S85. Appl. Environ. Microbiol. 56: 127–132.

    PubMed  CAS  Google Scholar 

  • Meshitsuka G, Lee ZZ, Nakano J & Eda S (1983) Contribution of pectic substances to lignin-carbohydrate bonding. Int. Symp. Wood Pulping Chem. 1: 149–152.

    Google Scholar 

  • Minor JL (1982) Chemical linkage of pine polysaccharides to lignin. J. Wood Chem. Technol. 2(1): 1–16

    Article  CAS  Google Scholar 

  • Morison IM (1974) Structural investigation on the lignin-carbohydrate complexes of Lolium perene. Biochem J. 139: 197–204.

    Google Scholar 

  • Mukoyoshi SI, Azuma JI and Koshijima T (1981) Lignin-carbohydrate complexes from compression wood of Pinus densiflora Sieb et. Zucc. Holzforschung 35: 233–240.

    Article  CAS  Google Scholar 

  • Neilson MJ & Richards GN (1982) Chemical structures in a lignin-carbohydrate complex isolated from bovine rumen. Carbohyd. Chem. 104: 121–138.

    CAS  Google Scholar 

  • Obst JR (1982) Frequency and alkali resistance of lignin-carbohydrate bonds in wood. Tappi 65(4): 109–112

    CAS  Google Scholar 

  • Odier E, Mozuch M, Kalyanaraman B & Kirk TK (1987) Cellobiose: quinone oxidoreductase does not prevent oxidative coupling of phenols or polymerization of lignin by ligninase. Les Colloques de l’INRA, No. 40. Dekker 131–136

    CAS  Google Scholar 

  • Paice MG, Bernier R & Jurasek L (1988a) Viscosity-enhancing bleaching of hardwood kraft pulp with xylanase from a cloned gene. Biotechnol. Bioeng. 32: 235–239.

    Article  PubMed  CAS  Google Scholar 

  • Paice MG, Bernier R & Jurasek L (1988b) Bleaching hardwood kraft with enzymes from cloned systems. CPPA Ann. Mtg. (Montreal) preprints 74A: 133–136

    Google Scholar 

  • Paszczynski A, Huynh V-B & Crawford R (1985) Enzymatic activities of an extracellular manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol. Lett. 29: 37–41.

    Article  CAS  Google Scholar 

  • Pometto AL & Crawford DL (1986) Catabolic fate of Streptomyces viridosporus T7A-produced, acid-precipitable polymeric lignin upon incubation with ligninolytic Streptomyces species and Phanerochaete chrysosporium. Appl. Environ. Microbiol. 51: 171–179.

    PubMed  CAS  Google Scholar 

  • Poutanen K & Sundberg M (1988) An acetyl esterase of Trichoderma reesei and its role in the hydrolysis of acetyl xylans. Appl. Microbiol. Biotechnol. 28: 419–424.

    Article  CAS  Google Scholar 

  • Puls J, Schmidt O & Granzow C (1987) α-Glucuronidase in two microbial xylanolytic systems. Enzyme Microb. Technol. 9: 83–88.

    Article  CAS  Google Scholar 

  • Ramachandra M, Crawford DL & Pometto AL (1987) Extracellular enzyme activities during lignocellulose degradation by Streptomyces spp.: A comparative study of wild-type and genetically manipulated strains. Appl. Environ. Microbiol. 53: 2754–2760.

    PubMed  CAS  Google Scholar 

  • Ramachandra M, Crawford DL & Hertel G (1988) Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl. Environ. Microbiol. 54: 3057–3063.

    PubMed  CAS  Google Scholar 

  • Reid ID, Abrams GD & Pepper JM (1982) Water soluble products from the degradation of aspen lignin by Phanerochaete chrysosporium Can. J. Bot. 60: 2357–2364.

    Article  CAS  Google Scholar 

  • Renganathan V, Usha SN, & Lindenburg F (1990) Cellobioseoxidizing enzymes from the lignocellulose-degrading basidiomycete Phanerochaete chrysosporium: Interaction with microcrystalline cellulose. Appl. Microbiol. Biotechnol. 32: 609–613.

    Article  CAS  Google Scholar 

  • Roberts JC, McCarthy AJ, Flynn NJ & Broda P (1990) Modification of paper properties by the pretreatment of pulp with Saccharomonospora viridis xylanase. Enzyme Microb. Technol. 12: 210–213.

    Article  CAS  Google Scholar 

  • Scalbert A, Monties B, Lallemand JY, Guittet E & Rolando C (1985) Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochemistry 24: 1359–1362.

    Article  CAS  Google Scholar 

  • Shimada M, Fukuzuka T & Higuchi T (1971) Ester linkages of p-coumaric acid in bamboo and grass lignins. Tappi 54: 72–78.

    CAS  Google Scholar 

  • Smith DCC (1955) Ester groups in lignin. Nature 176: 267–268.

    Article  CAS  Google Scholar 

  • Takahaski N & Koshijima T (1988) Ester linkages between lignin and glucuronoxylan in a lignin-carbohydrate complex from beech (Fagus crenata) wood. Wood Sci. Technol. 22: 231–241.

    Article  Google Scholar 

  • Tanabe H & Kobayashi Y (1986) Enzymatic maceration mechanism in biochemical pulping of mitsumata (Edgeworthia papyrifera Sieb, et Zucc.) bast. Agric. Biol. Chem. 50: 2779–2784.

    Article  CAS  Google Scholar 

  • Tanabe H & Kobayashi Y (1987) Effect of lignin-carbohydrate complex on maceration of mitsumata (Edgeworthia papyrifera Sieb, et Zucc.) bast by pectinolytic enzymes from Erwinia carotovora. Holzforschung 41: 395–399.

    Article  CAS  Google Scholar 

  • Tanabe H & Kobayashi Y (1988) Aggregate of pectic substances and lignin-carbohydrate complex in mitsumata (Edgeworthia papyrifera Sieb, et Zucc.) bast and its degradation by pectinolytic enzymes from Erwinia cartovora. Holzforschung 42: 47–52.

    Article  CAS  Google Scholar 

  • Tien M & Kirk TK (1983) Lignin-degrading enzyme from hymenomycete Phanerochaete chrysosporium Burds. Science 221: 661–663.

    Article  PubMed  CAS  Google Scholar 

  • Tien M & Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc. Natl. Acad. Sci. U.S.A. 81: 2280–2284.

    Article  PubMed  CAS  Google Scholar 

  • Timell TE (1962) Enzymatic hydrolysis of a 4-O-methylglucuronoxylan from the wood of white birch. Holzforschung 11: 436–447.

    Google Scholar 

  • Wang PY, Bolker HI & Purves CB (1967) Uronic acid ester groups in some softwoods and hardwoods. Tappi 50(3): 123–124

    CAS  Google Scholar 

  • Watanabe T & Koshijima T (1988) Evidence for an ester linkage between lignin and glucuronic acid in lignin-carbohydrate complexes by DDQ-oxidation. Agric. Biol. Chem. 52: 2953–2955.

    Article  CAS  Google Scholar 

  • Watanabe TJ, Ohnishi Y, Kaizu YS & Koshijima T (1989) Binding site analysis of the ether linkages between lignin and hemicelluloses in lignin-carbohydrate complexes by DDQ-oxidation. Agric. Biol. Chem. 53: 2233–2252.

    Article  CAS  Google Scholar 

  • Westermark U & Ericksson KE (1974a) Carbohydrate-dependent enzymic quinone reduction during lignin degradation. Acta Chem. Scand. B 28: 204–208.

    Article  CAS  Google Scholar 

  • Westermark U & Ericksson KE (1974b) Cellobiose-quinone oxidoreductase, a new wood-degrading enzyme from whiterot fungi. Acta Chem. Scand. B 28: 209–214.

    Article  CAS  Google Scholar 

  • Zimmerman W & Broda P (1989) Utilization of lignocellulose from barley straw by actinomycetes. Appl. Microbiol. Biotechnol. 30: 103–109.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jeffries, T.W. (1991). Biodegradation of lignin-carbohydrate complexes. In: Ratledge, C. (eds) Physiology of Biodegradative Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3452-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3452-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5527-7

  • Online ISBN: 978-94-011-3452-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics