Skip to main content

The analysis of communities of saprophytic microfungi with special reference to soil fungi

  • Chapter
Fungi in vegetation science

Part of the book series: Handbook of vegetation science ((HAVS,volume 19))

Abstract

The distinction between microfungi and macrofungi reflects ecological differences. Microfungi are usually cosmopolitan and have an enormous potential for dispersal. An efficient enzyme equipment and competitive saprophytic ability characterize the saprophytic mode of life. The present review is mainly concerned with saprophytic soil fungi.

The techniques used for soil-fungal analyses are briefly reviewed. The choice depends on the purposes of the study, such as the microbiological characterization of vegetation and soil types, studies of decomposition processes, etc. This paper is mainly confined to synecological studies of the fungal community; methods of soil sampling, direct observation and isolation techniques are assessed. Parameters for quantification and statistical analysis are subsequently reviewed.

The soil mycoflora comprises species of all major categories of fungi. Besides a nutritional grouping of the individual components, the potential of obligocarbotrophic growth deserves much attention. Specialist groups of thermophilic, heat-resistant, osmophilic, xerophilic and nematophagous fungi are considered. The possibility of chemical elimination of certain functional groups opens an important tool in ecological studies. In a discussion of growth patterns and strategies, r-strategists with short-lived mycelia and abundant sporulation and K-strategists with a slower growing, more persistent mycelium are confronted. Grimes’ concept that stress, disturbance and competition also determine the strategies has some impact on soil fungal ecology.

Fungal successions are partly determined by individual capacities to decompose resistant plant cell wall substances, but also by different speed of fructification. A view that K-strategists appear mainly after r-strategists must be considered with caution.

Besides soil fungi, the components of the leaf-surface microflora and the microfloras developing in various kinds of litter are mentioned. Factors that affect fungal colonization patterns include soil depth, microhabitats determined by roots and the rhizosphere, moisture and soil atmosphere, temperature, crop plants, seasonal effects, and anthropogenic disturbance and stress. The latter comprise i.a. acidification and ploughing of agricultural soils. Effects of the soil fauna on fungal colonization are increasingly appreciated. Antagonistic effects of other micro-organisms are recognized in many autecological studies.

The question whether there are associations of microfungi in soils comparable to those of plants is critically considered. The quantitatively dominant species have high communality values in the comparison of different biotopes, the infrequent ones show a large amount of unique variation. Few species are known to have an indicator role for particular ecological factors. Only in rare cases mycologists advance beyond the compiling of species lists in the study of successions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson, J. P. E., and K. H. Domsch. 1975. Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soils. Can. J. Microbiol. 21:314–322.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J. P. E., and K. H. Domsch. 1978a. Mineralization of bacteria and fungi in chloroform-fumigated sils. Soil Biol. Biochem. 10:207–213.

    Article  CAS  Google Scholar 

  • Anderson, J. P. E., and K. H. Domsch. 1978b. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10:215–222.

    Article  CAS  Google Scholar 

  • Apinis, A. E. 1958. Distribution of microfungi in soil profiles of certain alluvial grasslands. Angew. Pflanzensoziol. 15:83–90.

    Google Scholar 

  • Apinis, A. E. 1963a. Thermophilous fungi of coastal grasslands. p. 427–438. In: J. Doeksen and J. van der Drift (eds.) Soil Organisms. North-Holland Publ. Co., Amsterdam.

    Google Scholar 

  • Apinis, A. E. 1963b. Occurrence of thermophilous microfungi in certain alluvial soils near Nottingham. Nova Hedwigia 5:57–78.

    Google Scholar 

  • Apinis, A. E. 1972. Facts and problems. Mycopath. Mycol. appl. 48:93–109.

    Article  CAS  Google Scholar 

  • Baas-Becking, L. G. M. 1934. Geobiologie of inleiding tot de milieukunde. Van Stockum, Den Haag.

    Google Scholar 

  • Baath, E. 1981. Microfungi in a clear-cut pine (Pinus sylvestris) forest soi! in central Sweden. Can. J. Bot. 59:1331–1337.

    Article  Google Scholar 

  • Bääth, E. 1988. A critical exarnination of the soil washing technique with special reference to the effect of the size of the soil particles. Can. J. Bot. 66:1566–1569.

    Article  Google Scholar 

  • Bääth, E., B. Berg, U. Lohm, B. Lundgren, H. Lundkvist, T. Rosswall, B. E. Söderström, and A. Wiren. 1980. Effects of experimental acidification and lining on soil organisms and decomposition in a Scots pine forest. Pedobiologia 20:85–100.

    Google Scholar 

  • Bääth, E., B. Lundgren, and B. E. Söderström. 1981. Effects of nitrogen fertilization on the activity and biomass of fungi and bacteria in a podzolic soil. Zentbl. Bakt. Hyg., Abt. 1, Orig. C 2:90–98.

    Google Scholar 

  • Bääth, E., B. Lundgren, and B. E. Söderström. 1984. Fungal populations in podzolic soil experimentally acidified to simulate acid rain. Microbial Ecol. 10:197–203.

    Article  Google Scholar 

  • Bääth, E., and B. E. Söderström. 1978. Microfungi in Swedish coniferous forest soils. Svensk bot. Tidskr. 72:343–349.

    Google Scholar 

  • Bääth, E., and B. E. Söderström. 1979. The significance of hyphal diameter in calculation of fungal biovolume. Oikos 33:11–14. 1979.

    Article  Google Scholar 

  • Bääth, E., and B. E. Söderström. 1980a. Comparisons of the agar-film and membrane-filter methods for the estimation of hyphal lengths in soil, with particular reference to the effect of magnification. Soil Biol. Biochem. 12:385–387.

    Article  Google Scholar 

  • Bääth, E., and B. E. Söderström. 1980b. Degradation of macromolecules by microfungi isolated from different podzolic soil horizons. Can. J. Bot. 58:422–425.

    Google Scholar 

  • Barron, G. L. 1977. The nematode-destroying fungi. Can. Biol. Publ., Guelph, Ontario.

    Google Scholar 

  • Barron, G. L. 1982. Nematode-destroying fungi. p. 533–552. In: R. G. Bums and J. H. Slater (eds.) Experimental Microbiology. Blackwell, Oxford.

    Google Scholar 

  • Bissett, J., and D. Parkinson. 1979a. The distribution of fungi in some alpine soils. Can. J. Bot. 57:1609–1629.

    Article  Google Scholar 

  • Bissett, J., and D. Parkinson. 1979b. Fungal community structure in some alpine soils. Can. J. Bot. 57:1630–1641.

    Article  Google Scholar 

  • Bissett, J., and D. Parkinson. 1979c. Functional relationships between soil fungi and environmentinalpine tundra. Can.J. Bot. 57:1642–1659.

    Article  Google Scholar 

  • Bissett, J., and D. Parkinson. 1980. Long-term effects of fire on the composition and activity of the soil microflora of a subalpine, coniferous forest. Can. J. Bot. 58:1704–1721.

    Article  Google Scholar 

  • Boerema, G. H. and L. H., Höweler. 1967. Phoma exigua and its varieties. Persoonia 5:15–28.

    Google Scholar 

  • Bollen, G. J. 1979. Side-effects of pesticides on microbial interactions. p. 451–481. In: B. Schippers and W. Gams (eds.) Soil-bome plant pathogens. Academic Press, London.

    Google Scholar 

  • Bollen, G. J. 1985. Lethal temperatures of soil fungi. p. 191–193. In: C. A. Parker et al. (eds.) Ecology and management of soilbome plant pathogens. Am. Phytopath. Soc., St. Paul.

    Google Scholar 

  • Bollen, G. J., and A. Fuchs. 1970. On the specificity of the in vitro and in vivo antifungal activity of benomyl. Neth. J. PI. Path. 76:299–312.

    Article  CAS  Google Scholar 

  • Bollen, G. J., and B. van der Pol-Luiten. 1975. Mesophilic heat-resistant fungi. Acta bot. neerl. 24:254–255.

    Google Scholar 

  • Boogert, P. H. J. F. van den. 1989. Colonization of roots and stolons of potato by the mycoparasitic fungus Verticillium biguttatum. Soil Biol. Biochem. 21:255–262.

    Article  Google Scholar 

  • Bosatta, E., and F. Berendse. 1984. Energy or nutrient regulation of decomposition: implications for the mineralization-immobilization response to perturbations. Soil Biol. Biochem. 16:63–67.

    Article  CAS  Google Scholar 

  • Bray, J. R., and J. T. Curtis. 1957. An ordination of the upland forest communities of southem Wisconsin. Ecol. Monogr. 27:325–349.

    Article  Google Scholar 

  • Brian, P. W. 1957. The ecological significance of antibiotic production. p. 168-188. In: R. E. O. Williams and C. C. Spicer (eds.) Microbial ecology. 7th Symp. Soc. gen. Microbiol.

    Google Scholar 

  • Brown, J. C. 1958. Soil fungi of some British sand dunes in relation to soil type and succession. J. Ecol. 46:641–664.

    Article  Google Scholar 

  • Burges, N. A. 1958. Micro-organisms in the soil. Hutchinson University Library, London.

    Google Scholar 

  • Burges, N. A. 1963. The microbiology of a podzol profile. p. 151–157. In: J. Doeksen and J. van der Drift (eds.) Soil organisms. North Holland Publ. Co., Amsterdam.

    Google Scholar 

  • Burges, N. A. 1970. Time and size as factors in ecology. J. Ecol. 48:273–285.

    Google Scholar 

  • Burges, N. A. and E. Fenton. 1953. The effect of carbon dioxide on the growth of certain soil fungi. Trans. Br. mycol. Soc. 36:104–108.

    Article  CAS  Google Scholar 

  • Carpenter, S. E., and J. M. Trappe. 1985. Phoenicoid fungi: a proposed term for fungi that fruit after heat treatment of substrates. Mycotaxon 23:203–206.

    Google Scholar 

  • Carroll, G. C. 1986. The biology of endophytism in plants, with particular reference to woody perennials. p. 205–222. In: N. J. Fokkema and J. van den Heuvel (eds.) Microbiology of the phyllosphere. Cambridge Univ. Press.

    Google Scholar 

  • Carroll, G. C. 1988. Fungal endophytes in sterns and leaves: from latent pathogens to mutualistic symbiont. Ecology 69:2–9.

    Article  Google Scholar 

  • Christensen, M. 1981. Species diversity and dominance in fungal communities. p. 201–232. In: D. T. Wicklow and G. C. Carroll (eds.) The fungal community, its organization and role in the ecosystem. M. Dekker, New York, Basel.

    Google Scholar 

  • Christensen, M. 1989. A view of fungal ecology. Mycologia 81:1–19.

    Article  Google Scholar 

  • Cooke, R. C., and A. D. M. Rayner. 1984. Ecology of saprotrophic fungi. Longman, London.

    Google Scholar 

  • Cooke, R. C., and J. M. Whipps. 1980. Evolution of modes of nutrition in fungi parasitic on terrestrial plants. Biol. Revs. 55:341–362.

    Article  Google Scholar 

  • Cooney, D. G., and R. Emerson. 1964. Thermophilic fungi. Freeman, S. Francisco and London.

    Google Scholar 

  • Courtois, H. 1963. Beitrag zur Frage holzabbauender Ascomyceten und Fungi imperfecti. Holzforschung 17:176–183.

    Article  CAS  Google Scholar 

  • Curl, E. A, and B. Truelove. 1986. The rhizosphere. Springer, Berlin, Heidelberg.

    Book  Google Scholar 

  • Dickinson, C. H., and G. J. F. Pugh (eds.). 1974. Biology of plant litter decomposition. Academic Press, London.

    Google Scholar 

  • Dobbs, C. G., and W. H. Hinson. 1953. A widespread fungistasis in soils. Nature, Lond. 172:197–199.

    Article  CAS  Google Scholar 

  • Domsch, K. H. 1986. Influence of management on microbial communities in soil. p. 355–367. In: V. Jensen, A. Kjoller and L. H. Sorensen (eds.) Microbial communities in soil. Elsevier, London.

    Google Scholar 

  • Domsch, K. H., Th. Beck, J. P. E. Anderson, B. Söderström, D. Parkinson, and G. Trolldenier. 1979. A comparison of methods for soil microbial population and biomass studies. Z. Pflanzenern. Bodenk. 142:520–533.

    Article  CAS  Google Scholar 

  • Domsch, K. H., and W. Gams. 1968a. Die Bedeutung vorfruchtabhängier Verschiebungen in der Bodenmikroflora. 1. Der Einfluβ von Bodenpilzen auf die Wurzelentwicklung von Weizen, Erbsen und Raps. Phytopath. Z. 63:64–74.

    Article  Google Scholar 

  • Domsch, K. H., and W. Gams, 1968b. Die Bedeutung vorfruchtabhängier Verschiebungen in der Bodenmikroflora. III. Der Abbau organischer Substrate. Phytopath. Z. 63:287–297.

    Article  Google Scholar 

  • Domsch, K. H., and W. Gams. 1969. Variability and potential of a soil fungus population to decompose pectin, xylan and carboxymethyl-cellulose. Soil Biol. Biochem. 1:29–36.

    Article  CAS  Google Scholar 

  • Domsch, K. H., and W. Gams. 1970. Pilze aus Agrarböden. G. Fischer, Stuttgart.

    Google Scholar 

  • Domsch, K. H., W. Gams, and T.-H. Anderson. 1980. Compendium of Soil Fungi. Academic Press, London.

    Google Scholar 

  • Domsch, K. H., W. Gams, and E. Weber. 1968. Der Einfluβ verschiedener Vorfrüchte auf das Bodenpilzspektrum in Weizenfeldern. Z. PfiErn. Bodenk. 119:134–149.

    Article  Google Scholar 

  • Duncan, C. G. 1960. Wood-attacking capacities and physiology of soft-rot fungi. Rep. U.S. Dep. Agric., For Prod. Lab. Madison No. 2173.

    Google Scholar 

  • Edington, L. V., K. L. Khew, and G. L. Barron. 1971. Fungitoxic spectrum of benzimidazole compounds. Phytopathology 61:42–44.

    Article  Google Scholar 

  • Edwards, C. A., B. R. Stinner. D. Stinner, and S. Rabatin (eds.). 1988. Biological interactions in soil. Elsevier, Amsterdam.

    Google Scholar 

  • Eggins, H. O. W., and G. J. F. Pugh. 1962. Isolation of cellulose-decomposing fungi from the soil. Nature, Lond. 207:440–441.

    Google Scholar 

  • Elmholt, S., and A. Kjoller. 1987. Measurement of the length of fungal hyphae by the membrane filter technique as a method for comparing fungal occurrence in cultivated field soils. Soil Biol. Biochem. 19:679–682.

    Article  Google Scholar 

  • Emden, J. H. van, 1972. Soil mycoflora in relation to some crop-plants. EPPO Bull. 7:17–26.

    Article  Google Scholar 

  • Flanagan, P. W. 1981. Fungal taxa, physiological groups, and biomass: a comparison between ecosystems. p. 509–592. In: D. T. Wicklow and G. C. Carroll (eds.) The fungal community, its organization and role in the ecosystem. M. Dekker, New York, Basel.

    Google Scholar 

  • Flowers, R. A, and J. W. Hendrix. 1969. Gallic acid in a procedure for isolation of Phytophthora parasitica var. nicotianae and Pythium spp. from soil. Phytopathology 59:725–731.

    CAS  Google Scholar 

  • Fokkema, N. J., and J. van den Heuvel (eds.). 1986. Microbiology of the phyllosphere. Cambridge Univ. Press.

    Google Scholar 

  • Frankland, J. C. 1974. Importance of phase-contrast microscopy for estimation of total fungal biomass by the agar-film technique. Soil Biol. Biochem. 6:409–410.

    Article  Google Scholar 

  • Frankland, J. C. 1975. Estimation of live fungal biomass. Soil Biol. Biochem. 7:339–340.

    Article  Google Scholar 

  • Frankland, J. C. 1981. Mechanisms in fungal succession. p. 403–426. In: D. T. Wicklow and G. C. Carroll (eds.) The fungal community, its organization and role in the ecosystem. M. Dekker, New York, Basel.

    Google Scholar 

  • Frankland, J. C. 1982. Biomass and nutrient cycling by decomposer Basidiomycetes. p. 241–261. In: J. C. Frankland, J. N. Hedger and M. J. Swift (eds.) Decomposer Basidiomycetes, their biology and ecology. Cambridge University Press.

    Google Scholar 

  • Frankland, J. C. 1990. Ecological methods of observing and quantifying soil fungi. Trans. mycol. Soc. Japan 31:89–101.

    Google Scholar 

  • Frankland, J. C., A. D. Bailey, T. R. G. Gray, and A. A. Holland, 1981. Development of an immunological technique for estimating mycelial biomass of Mycena galopus in leaf litter. Soil Biol. Biochem. 13:87–92.

    Article  Google Scholar 

  • Fravel, D. R. 1988. Role of antibiosis in the biocontrol of plant diseases. A. Rev. Phytopath. 26:75–91.

    Article  CAS  Google Scholar 

  • Gams, W. 1960. Studium zellulolytischer BodenpHze mit Hilfe der Zellophanstreifen-Methode und mit Carboxymethyl-Zellulose. Sydowia 14:295–307.

    Google Scholar 

  • Gams, W. 1967. Mikroorganismen in der Wurzelregion von Weizen. Mitt. Biol. Bundesanst. Ld.-u. Forstw. 123:77 pp.

    Google Scholar 

  • Gams, W., H. A. van der Aa, A. J. van der Plaats-Niterink, R. A. Samson, and J. A. Stalpers. 1987. CBS course of mycology. Centraalbureau voor Schimmelcultures, Baarn.

    Google Scholar 

  • Gams, W., and K. H. Domsch. 1967. Beiträge zur Anwendung der Bodenwaschtechnik für die Isolierung von Bodenpilzen. Arch. Mikrobiol. 58:134–144.

    Article  Google Scholar 

  • Gams, W., and K. H. Domsch. 1969. The spatial and seasonal distribution of microsopic fungi in arable soils. Trans. Br. mycol. Soc. 52:301–308.

    Article  Google Scholar 

  • Gams, W., K. H. Domsch, and E. Weber. 1969. Nachweis signifikant verschiedener Pilzpopulationen bei gleicher Bodennutzung. PI. Soil 31:439–450.

    Article  Google Scholar 

  • Gams, W., and W. van Laar. 1982. The use of Solacol ® (validamycin) as a growth retardant in the isolation of soil fungi. Neth. J. PI. Path. 88:39–45.

    Article  CAS  Google Scholar 

  • Gams, W., and D. Parkinson. 1961. Problematik der Bodenmykologie. Ber. geobot. Inst. Eidg. Techn. Hochseh. St. Rübel 32:176–86.

    Google Scholar 

  • Garrett, S. D. 1951. Ecological groups of soil fungi; a survey of substrate relationships. New Phytol. 50:149–166.

    Article  Google Scholar 

  • Garrett, S. D. 1956. Biology of root-infecting fungi. Cambridge Univ. Press.

    Google Scholar 

  • Garrett, S. D. 1963. Soil fungi and soil fertility. Pergamon Press, Elmsford, New York.

    Google Scholar 

  • Gee, J. H. R., and P. S. Giller (eds.). 1987. Organization of communities, past and present. Blackwell, Oxford.

    Google Scholar 

  • Gray, N. F. 1983. Ecology of nematophagous fungi: distribution and habitat. Ann. appl. Biol. 102:501–509.

    Article  Google Scholar 

  • Gray, N. F. 1984. Ecology of nematophagous fungi: methods of collection, isolation and maintenance of predatory and endoparasitic fungi. Mycopathologia 86:143–153.

    Article  Google Scholar 

  • Griffin, D. M. 1972. Ecology of soil fungi. Chapman and Hall, London.

    Google Scholar 

  • Grime, J. P. 1979. Plant strategies and vegetation processes. J. Wiley, Chichester.

    Google Scholar 

  • Guillemat, J., and J. Montegut. 1956. Contribution a l’etude de la microflore fongique des sols cultives. Annls Epiphyt. 7:472–540.

    Google Scholar 

  • Handley, W. R. C. 1954. Mull and mor formation in relation to forest soils. Bull. For. Comm. London 23:115 pp.

    Google Scholar 

  • Hanssen, J. F., T. F. Thingstad, and J. Goksøyr. 1974. Evaluation of hyphallength and fungal biomass in soil by a membrane filter technique. Oikos 25:102–107.

    Article  Google Scholar 

  • Hadey, J. L., and J. S. Waid. 1955. A method of studying active mycelia on living roots and other surfaces in the soil. Trans. Br. mycol. Soc. 38:104–118.

    Article  Google Scholar 

  • Hepple, S. 1960. The movement of fungal spores in soil. Trans. Br. mycol. Soc. 43:73–79.

    Article  Google Scholar 

  • Hiltner, L. 1904. Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arb. dt. Landw. Ges. 98:59–78.

    Google Scholar 

  • Hocking, A D., and J. I. Pitt. 1980. Dichloran-glycerol medium for enumeration of xerophilic fungi from low-moisture foods. Appl. environm. Microbiol. 39:488–492.

    CAS  Google Scholar 

  • Hofer, L., Th. Beck, and P. Wallnöfer. 1971. Der Einfluβ des Fungizids Benomyl auf die Bodenmikroflora. Z. PfIKrankh. PfISchutz 78:398–407.

    CAS  Google Scholar 

  • Holubova-Jechova, V. 1971. Phenoloxidase enzymes from wood-inhabiting Hyphomycetes. Ceska Mykol. 25:23–32.

    Google Scholar 

  • Hudson, H. J. 1975. Secondary saprophytic fungi. p. 15–18. In: G. Kilbertus et al. (eds.) Biodegradation et humification. Nancy. Pierron, Sarreguemines.

    Google Scholar 

  • Huston, M. 1979. A general hypothesis of species diversity. Am. Natur. 113:81–101.

    Article  Google Scholar 

  • Ingold, C. T. 1971. Fungal spores, their liberation and dispersal. Clarendon, Oxford.

    Google Scholar 

  • Insam, H., and K. H. Domsch. 1988. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microb. Ecol. 15:177–188.

    Article  Google Scholar 

  • Johann, F. 1932. Untersuchungen über Mucorineen des Waldbodens. Zentbl. Bakt. ParasitKde, Abt. 2, 85:305–338.

    Google Scholar 

  • Johnen, B. G. 1978. Rhizosphere micro-organisms and roots stained with europium chelate and fluorescent brightener. Soil Biol. Biochem. 10:495–502.

    Article  CAS  Google Scholar 

  • Johnson, L. F. and E. A. Curl. 1972. Methods for research on the ecology of soil-borne plant pathogens. Burgess Publ. Co., Minneapolis.

    Google Scholar 

  • Jones, P. T. C., and J. E. Mollison. 1948. A technique for the quantitative estimation of microorganisms. J. gen. Microbiol. 2:54–69.

    Article  CAS  Google Scholar 

  • Jongman, R. H. G., C. J. F. ter Braak, and O. F. R. van Tongeren. 1987. Data analysis in community and landscape ecology. PUDOC, Wageningen.

    Google Scholar 

  • Kaastra-Höweler, L. H., and W. Gams. 1973. Preliminary study on the effect of benomyl on the fungal flora in a greenhouse soil. Neth. J. PI. Path. 79:156–158.

    Article  Google Scholar 

  • Kendrick, W. B., and N. A Burges. 1962. Biological aspects of the decay of Pinus sylvestris leaf litter. Nova Hedwigia 4:313–342.

    Google Scholar 

  • King, A. D., A. D. Hocking, and J. I. Pitt. 1979. Dichloran-rose bengal medium for the enumeration and isolation of molds from foods. Appl. environm. Microbiol. 37:959–964.

    Google Scholar 

  • Kirby, J. J. H., J. Webster, and J. H. Baker. 1990. A particle plating method for analysis of fungal community composition and structure. Mycol. Res. 94:621–626.

    Article  Google Scholar 

  • Kjoller, A, and S. Struwe. 1980. Microfungi of decomposing red alder leaves and their substrate utilization. Soil Biol. Biochem. 12:425–431.

    Article  Google Scholar 

  • Kjoller, A, and S. Struwe. 1982. Microfungi in ecosystems: Fungal occurrence and activity in litter and soil. Oikos 39:1391–1422.

    Article  Google Scholar 

  • Kloidt, M. 1989. Untersuchungen zum Abbau der Buchenblattstreu durch Pilze. Dissert. bot. 130, J. Cramer.

    Google Scholar 

  • Kubiena, W., and C. E. Renn. 1935. Micropedological studies of the influence of different organic compounds upon the microflora of the soil. Zentbl. Bakt. ParasitKde, Abt. 2, 91:267–292.

    CAS  Google Scholar 

  • Kuthubutheen, A J., and J. Webster. 1986. Water availability and the coprophilous fungus succession. Trans. Br. mycol. Soc. 86:63–76.

    Article  Google Scholar 

  • Kuyper, Th. W. 1989. Mycelial growth in a pine forest subjected to different fertilisation treatments. Manuscript.

    Google Scholar 

  • Lehmann, P. F. 1976. Unusual fungi on pine leaf litter induced by urea and urine. Trans. Br. mycol. Soc. 67:251–253.

    Article  Google Scholar 

  • Linnemann, G. 1958. Untersuchungen zur Verbreitung und Systmatik der Mortierellen. Arch. Mikrobiol. 30:256–267.

    Article  PubMed  CAS  Google Scholar 

  • Lockwood, J. L. 1977. Fungistasis in soils. Biol. Rev. 52:1–43.

    Article  CAS  Google Scholar 

  • Lockwood, J. L. 1988. Evolution of concepts associated with soilborne plant pathogens. A. Rev. Phytopath. 26:93–121.

    Article  Google Scholar 

  • Loub, W. 1960. Die mikrobiologische Charakterisierung von Bodentypen. Die Bodenkultur A 11(1):38–70.

    Google Scholar 

  • Maloy, O. C. 1974. Benomyl-malt agar for the purification of cultures of wood decay fungi. PI. Dis. Reptr 58:902–904.

    Google Scholar 

  • Mankau, R. 1980. Biocontrol: fungi as nematode control agents. J. Nematol. 12:213–232.

    Google Scholar 

  • Massari, G. 1988. Pour une methode d’etude de la mycoflore du sol. Rev. Bcol. Biol. Sol 20:445–460.

    Google Scholar 

  • Mishustin, E. N. (ed.). 1972. Microflora of soils in the Northem and Central USSR. Israel Progr. scient. Transl. Jerusalem.

    Google Scholar 

  • Mishustin, E. N., O. I. Pushkinskaya, and Z. F. Teplyakova. 1961. (The ecologo-geographical distribution of microseopie soil fungi). Trudy Inst. Pochv. Alma-Ata 12:3–64.

    Google Scholar 

  • Morris, C. E., and D. I. Rouse. 1986. Microbiological and sampling considerations for quantification of epiphytic microbial community structure. p. 3–13. In: N. J. Fokkema and J. van den Heuvel (eds.) Microbiology of the phyllosphere. Cambridge Univ. Press.

    Google Scholar 

  • Nagel-de Boois, H. M., and E. Jansen. 1971. The growth of fungal mycelium in forest soil layers. Rev. Ecol. Biol. Sol 8:509–520.

    Google Scholar 

  • Newell, S. Y., T. L. Arsuffi, and R. D. Fallon. 1988. Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography. Appl. Environ. Microbiol. 54:1876–1879.

    PubMed  CAS  Google Scholar 

  • Nordgren, A., E. Bääth, and B. E. Söderström. 1985. Soil microfungi in an area polluted by heavy metals. Can. J. Bot. 63:448–455.

    Article  CAS  Google Scholar 

  • Papavizas, G. C., and R. D. Lumsden. 1982. Improved medium for isolation of Trichoderma spp. from soil. Plant Dis. 66:1019–1020.

    Article  Google Scholar 

  • Park, D. 1968. The ecology of terrestrial fungi p. 5–39. In: G. C. Ainsworth, A. S. Sussmann (eds.) The fungi, vol. 3. Academic Press, New York.

    Google Scholar 

  • Park, D. 1973. A modified medium for isolation and enumeration of cellulose-decomposing fungi. Trans. Br. mycol. Soc. 60:148–151.

    Article  Google Scholar 

  • Parkinson, D. 1970. Methods for the quantitative study of heterotrophic soil micro-organisms. p. 101–105. In: J. Phillipson (ed.) Methods of study in soil ecology. Unesco, Geneve.

    Google Scholar 

  • Parkinson, D., T. R. G. Gray, and S. T. Williams. 1971. Methods for studying the ecology of soil micro-organisms. IBP Handbook No. 19. Blackwell, Oxford.

    Google Scholar 

  • Parkinson, D., and S. T. Williams. 1961. A method for isolating fungi from soil microhabitats. PI. Soil 13:347–355.

    Article  Google Scholar 

  • Persson, T., E. Bääth, M. Clarholm, H. Lundkvist, B. Söderström, and B. Sohlenius. 1980. Trophic structure, biomass dynarnics and carbon metabolism of soil organisms in a Scots pine forest. Ecol. Bull. Stockholm 32:419–459.

    CAS  Google Scholar 

  • Petrini, L., and O. Petrini. 1986. Xylariaceous fungi as endophytes. Sydowia 38:216–234 (“1985”).

    Google Scholar 

  • Petrini, O. 1986. Taxonomy of endophytic fungi of aerial plant tissues. p. 175–187. In: N. J. Fokkema and J. van den Heuvel (eds.) Microbiology of the phyllosphere. Cambridge Univ. Press.

    Google Scholar 

  • Peyronel, B. 1955. Proposta di un nuovo metodo di rappresentazione grafica della composizione dei consorzi vegetali. Nuovo G. bot. ital. N. S. 62:379–382.

    Google Scholar 

  • Pirozynski, K. A. 1968. Geographical distribution of fungi. p. 487–504. In: G. C. Ainsworth and A. S. Sussman (eds.) The fungi, an advanced treatise, vol. 3. Acad. Press, London.

    Google Scholar 

  • Plaats-Niterink, A. J. van der. 1981. Monograph of the genus Pythium. Stud. Mycol. 21:242 pp.

    Google Scholar 

  • Ponchet, J., and R. Trarnier. 1971. Effets du benomyl sur la croissance de l’oeillet et la microflore des sols traites. Annls Phytopath. 3:401–406.

    CAS  Google Scholar 

  • Pugh, G. J. F., 1980. Strategies in fungal ecology. Trans. Br. mycol. Soc. 75:1–14.

    Article  Google Scholar 

  • Pugh, G. J. F. and L. Boddy. 1988. A view of disturbance and life strategies in fungi. Proc. R. Soc. Edinb. 94B:3–11.

    Google Scholar 

  • Pugh, G. J. F., and J. H. van Emden. 1969. Cellulose-decomposing fungi in polder soils and their possible influence on pathogenie fungi. Neth. J. PI. Path. 75:287–295.

    Article  Google Scholar 

  • Rayner, A. D. M., and L. Boddy. 1988. fungal decomposition of wood, its biology and ecology.-J. Wiley, Chichester.

    Google Scholar 

  • Riesen, Th., and Th. Sieber. 1985. Endophytic fungi in winter wheat. Diss. Mikrobiol. Inst. ETH, Zürich.

    Google Scholar 

  • Rosswall, T., J. Schnürer, and S. Söderlund. 1986. Interactions of acidity, aluminium ions and microorganisms. p. 395–410. In: V. Jensen, A. Kjøller and L. H. Sørensen (eds.) Microbial communities in soil. Elsevier, London.

    Google Scholar 

  • Russell, P. 1956. A se1ective medium for the isolation of basidiomycetes. Nature, Lond. 177:1038–1039.

    Article  Google Scholar 

  • Salt, G. A. 1979. The increasing interest in ‘minor pathogens’. p. 289–312. In: B. Schippers and W. Gams (eds.) Soil-borne plant pathogens. Acad. Press, London.

    Google Scholar 

  • Sappa, F. 1955. La micoflora dei terreno quasi elemento strutturale delle communita vegetali: I. Saggi metodologici sul Calluneto di S. Francesco al Campo (Torino). Allionia 2:293–345.

    Google Scholar 

  • Schnürer, J., M. Clarholm, and T. Rosswall. 1985. Microbial biomass and activity in an agricultural soil with different organic matter contents. Soil Biol. Biochem. 17:611–618.

    Article  Google Scholar 

  • Siegel, M. R. 1975. Benomyl-soil microbial interactions. Phytopathology 65:219–220.

    Article  CAS  Google Scholar 

  • Söderström, B. E. 1975. Vertical distribution of microfungi in a spruce forest soil in the south of Sweden. Trans. Br. mycol. Soc. 65:419–425.

    Article  Google Scholar 

  • Söderström, B. E. 1977. Vital staining of fungi in pure cultures and in soil with fluorescein diacetate. Soil Biol. Biochem. 9:59–63.

    Article  Google Scholar 

  • Söderström, B. E. 1979. Some problems in assessing the fluorescein diacetate-active fungal biomass in the soil. Soil Biol. Biochem. 11:147–148.

    Article  Google Scholar 

  • Söderström, B. E., and E. Bääth. 1978. Soil microfungi in three Swedish coniferous forests. Holarctic Ecol. 1:62–72.

    Google Scholar 

  • Söderström, B. E., E. Bääth, and B. Lundgren. 1983. Decrease in soil microbial activity and biomasses owing to nitrogen amendments. Can. J. Microbiol. 29:1500–1506.

    Article  Google Scholar 

  • Söderström, B. E., and S. Erland. 1986. Isolation of fluorescein diacetate stained hyphae from soil by micromanipulation. Trans. Br. mycol. Soc. 86:465–468.

    Article  Google Scholar 

  • Sørensen, T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. Kgl. Danske Vidensk. Selsk. Biol. Skr. 5(4):1–34.

    Google Scholar 

  • Stalpers, J. A. 1976. Identification of wood-inhabiting Aphyllophorales in pure culture. Stud. Mycol. 16:248 pp.

    Google Scholar 

  • States, J. S. 1981. Useful criteria in the description of fungal communites. p. 185–199. In: D. T. Wicklow and e. G. Carroll (eds.) The fungal community, its organization and role in the ecosystem. M. Dekker, New York, Basel.

    Google Scholar 

  • Summerbell, R. C. 1989. Microfungi associated with the mycorrhizal mantle and adjacent microhabitats within the rhizosphere of black spruce. Can. J. Bot. 67:1085–1095.

    Article  Google Scholar 

  • Sundman, V., and S. Sievelä. 1978. A comment on the membrane filter technique for estimation of length of fungal hyphae in the soil. Soil Biol. Biochem. 10:399–401.

    Article  Google Scholar 

  • Swift, M. J. 1984. Microbial diversity and decomposer niches. p. 8–16. In: M. J. Klug and C. A. Reddy (eds.) Current Perspectives in Microbial Ecology. Am. Soc. Microbiol., Washington DC.

    Google Scholar 

  • Swift, M. J. 1987. Organization of assemblages of decomposer fungi in space and time. p. 229–253. In: J. H. R. Gee and P. S. Giller (eds.) Organization of communities, past and present. Blackwell, Oxford and London.

    Google Scholar 

  • Swift, M. J., and O. W. Heal. 1986. Theoretical considerations of microbial succession and growth strategies: intellectual exercise or practical necessity? p. 115–131. In: Jensen et al. (eds.) Microbial communities in soil. Elsevier, London.

    Google Scholar 

  • Swift, M. J., O. W. Heal, and J. M. Anderson. 1979. Decomposition in terrestrial ecosystems. Blackwell, Oxford.

    Google Scholar 

  • Taylor, B., and D. Parkinson. 1988. A new microcosm approach to litter decomposition studies. Can. J. Bot. 66:1933–1939.

    Article  Google Scholar 

  • Thomas, A., D. P. Nicholas, and D. Parkinson 1965. Modifications of the agar film technique far assaying lengths of mycelium in soil. Nature, Lond. 205:105.

    Article  Google Scholar 

  • Thomton, R. H. 1956. Fungi occurring in mixed oakwood and heath soil profiles. Trans. Br. mycol. Soc. 39:485–494.

    Article  Google Scholar 

  • Trautnann, C., M. Peters, and G. Kraepelin. 1992. Die Mucarales-Flora in Streu-und Bodenhorizonten eines Berliner Kiefernwaldes. I. Einfluβ einer Kalkdüngung auf die Mucorales-Population. Z. Mykol. 58:3–14.

    Google Scholar 

  • Tresner, H. D., M. P. Backus, and J. T. Curtis. 1954. Soil microfungi in relation to the hardwood forest continuum in southem Wisconsin. Mycologia 46:314–333.

    Google Scholar 

  • Tribe, H. T. 1957. Ecology of micro-organisms in soils as observed during their development upon buried cellulose film. p. 287–298. In: R. E. O. Williams and C. C. Spicer (eds.) Microbial Ecology. 7th Sympos. Soc. gen. Microbiol.

    Google Scholar 

  • Tribe, H. T. 1977. Pathology of cyst nematodes. Biol. Revs 52:477–507.

    Article  Google Scholar 

  • Tribe, H. T. 1980. Prospects for the biological control of plant-parasitic nematodes. Parasitology 81:619–639.

    Article  Google Scholar 

  • Tsao, P. H. 1970. Selective media for isolation of pathogenic fungi. A. Rev. Phytopath. 8:157–186.

    Article  Google Scholar 

  • Tsao, P. H., and S. O. Guy. 1977. Inhibition of Mortierella and Pythium in a Phytophthoraisolation medium containing Hymexazol. Phytopathology 67:796–801.

    Article  CAS  Google Scholar 

  • Verhoef, H. A., J. E. Prast, and R. A. Verweij. 1988. Relative importance of fungi and algae in the diet and nitrogen nutrition of Orchesella cincta (L.) and Tomocerus minor (Lubbock) (Collembla). Functional Ecol. 2:195–201.

    Article  Google Scholar 

  • Visser, S., and D. Parkinson. 1975. Fungal succession on aspen-poplar leaf litter. Can. J. Bot. 53:1640–1651.

    Article  Google Scholar 

  • Waid, J. S., and M. J. Woodman. 1967. A method of estimating hyphal activity in soil. Pedobiologia 7:155–158.

    Google Scholar 

  • Wainwright, M. 1988. Metabolic diversity of fungi in relation to growth and mineral cyc1ing in soil-a review. Trans. Br. mycol. Soc. 90:159–170.

    Article  CAS  Google Scholar 

  • Warcup, J. J. 1950. The soil-plate method. Nature, Lond. 170:166–167.

    Google Scholar 

  • Warcup, J. H. 1951a. The ecology of soil fungi. Trans. Br. mycol. Soc. 34:376–399.

    Article  Google Scholar 

  • Warcup, J. H. 1951b. Effect of partial sterilization by steam or formalin on the fungus flora of an old forest nursery soil. Trans. Br. mycol. Soc. 34:520–532.

    Google Scholar 

  • Warcup, J. H. 1955a. Isolation of fungi from hyphae present in soil. Nature, Lond. 175:953.

    Article  CAS  Google Scholar 

  • Warcup, J. H. 1955b. On the origin of fungi developing on soil dilution plates. Trans. Br. mycol. Soc. 38:298–301.

    Article  Google Scholar 

  • Warcup, J. H. 1967. Fungi in soil. p. 51–110. In: N. A. Burges and F. Raw (eds.) Soil biology. Academic Press, London.

    Google Scholar 

  • Webster, J. 1970. Coprophilous fungi. Trans. Br. mycol. Soc. 54:161–180.

    Article  Google Scholar 

  • Weller, D. M. 1988. Biological control of soilbome plant pathogens in the rhizosphere with bacteria. A. Rev. Phytopath. 26:379–407.

    Article  Google Scholar 

  • West, A. W. 1988. Specimen preparation, stain type, and extraction and observation procedures as factors in the estimation of soil myceliallengths and volumes by light microscopy. Biol. Fertil. Soils 7:88–94.

    Article  Google Scholar 

  • Wicklow, D. T. 1981a. The coprophilous fungal community: a mycological system far examining ecological ideas. p. 47–76. In: D. T. Wicklowand G. C. Carroll (eds.) The fungal community, its organization and role in the ecosystem. M. Dekker, New York, Basel.

    Google Scholar 

  • Wicklow, D. T. 1981b. Biogeography and conidial fungi. p. 417–447. In: G. T. Cole and B. Kendrick (eds.) Biology of conidial fungi, Vol. 1. Acad. Press, New York.

    Google Scholar 

  • Wicklow, D. T., and G. C. Carroll (eds.). 1981. The fungal community, its organization and role in the ecosystem. M. Dekker, New York, Basel.

    Google Scholar 

  • Widden, P. 1981. Patterns of phenology among fungal populations. p. 387–401. In: D. T. Wicklowand G. C. Carroll (eds.) The fungal community, its organization and role in the ecosystem. M. Dekker, New York, Basel.

    Google Scholar 

  • Widden, P. 1986a. Microfungal community structure from forest soils in southem Quebec, using discriminant function and factor analysis. Can. J. Bot. 64:1402–1412.

    Article  Google Scholar 

  • Widden, P. 1986b. Seasonality of forest soil microfungi in southem Quebec. Can. J. Bot. 64:1413–1423.

    Article  Google Scholar 

  • Widden, P. 1986c. Functional relationships between Quebec forest soil microfungi and their environment. Can. J. Bot. 64:1424–1432.

    Article  Google Scholar 

  • Widden, P., and D. Parkinson. 1973. Fungi from Canadian coniferous forest soils. Can. J. Bot. 51:2275–2290.

    Article  Google Scholar 

  • Widden, P., and D. Parkinson. 1975. The effects of a forest fire on soil microfungi. Soil Biol. Biochem. 7:125–138.

    Article  Google Scholar 

  • Wilcoxon, F., and R. A. Wilcox. 1964. Some rapid approximate statistical procedures. Lederle Lab., Pearl River, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gams, W. (1992). The analysis of communities of saprophytic microfungi with special reference to soil fungi. In: Winterhoff, W. (eds) Fungi in vegetation science. Handbook of vegetation science, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2414-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2414-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5065-4

  • Online ISBN: 978-94-011-2414-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics