Skip to main content

Freeze-drying of biohazardous products

  • Chapter
Biosafety in Industrial Biotechnology

Abstract

Freeze-drying (lyophilisation) is a well-established technique used to dehydrate labile materials often, but not exclusively of biological origin. The process is economically expensive compared with other drying techniques but where the emphasis is on product stabilisation rather than dehydration, freeze-drying remains a preferred method for preserving heat-sensitive bioproducts.1. The technique was used as early as 1903 by Vansteenberge2. for dehydrating rabies virus and the potential hazards inherent in the process as well as the benefits of freeze-drying have been recognised since that time. Little has been published, however, that specifically addresses the problems associated with processing biohazardous materials.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adams, G.D.J. (1991). Freeze-Drying of biological materials, Drying Technology, 9(4), 891–925.

    Article  Google Scholar 

  2. Vansteenberge, M.P. (1903). Precede de conservation du virus rabique a l’etat sec, C.r. Seanc. Soc. Biol., 55, 1646–1647.

    Google Scholar 

  3. Fry, R.M. (1966). Freezing and drying of bacteria. In Cryobiology. H.T. Meryman (Ed), pp. 665–693. Academic Press.

    Google Scholar 

  4. Chatigny, M.A. and Clinker, D.I. (1969). In An Introduction to Experimental Aerobiology. R.L. Dimmick and Ann B. Ackers (Eds), pp. 194–263. Wiley-Interscience, New York.

    Google Scholar 

  5. Cox, C.S. (1987). The Aerobiological Pathway of Microorganisms. Wiley-Interscience: New York.

    Google Scholar 

  6. Swanepoel, R., Erasmus, B.J., Williams, R. and Taylor, M.B. (1992). Encephalitis and chorioetinitis associated with neurotropic African Horsesickness Virus infection in laboratory workers. Part III. Virological and serological investigations, S. Afr. Med. J., 81 (9), 458–461.

    CAS  Google Scholar 

  7. Rowe, T.W.G. (1970). Freeze-drying of biological materials: some physical and engineering aspects. In Current Trends in Cryobiology. A.V. Smith (Ed), 61–138. Plenum Press: New York.

    Google Scholar 

  8. La Salle, B. (1977). Problems of contamination, exposure and pollution in freeze-drying biological products. Int. Symp. on Freeze-Drying of Biological Products. Develop. biol. standard., 36, 201–205. S. Karger, Basel.

    Google Scholar 

  9. Brethwick, L. (Ed) (1986). Hazards in the chemical latoratory (4th edn). The Royal Society of Chemistry, London.

    Google Scholar 

  10. A Guide to Genetically Modified Organisms (Contained Use) Regulations 1992. HMSO, London 1993.

    Google Scholar 

  11. Categorisation of pathogens according to hazard and categories of containment. Second edition, 1990. Advisory Committee on Dangerous Pathogens, HMSO, London.

    Google Scholar 

  12. Heckly, R.J. (1978). Preservation of microorganisms, Advances in Applied Microbiology, 24, 1–53.

    Article  CAS  Google Scholar 

  13. Rowe, T.W.G. (1971). Machinery and methods in freeze-drying, Cryobiology, 8, 153–172.

    Article  CAS  Google Scholar 

  14. Special stoppering ampule. Labconco Corporation, 8811 Prospect: Kansas City, MO 64312, USA.

    Google Scholar 

  15. Becton Dickinson, 21 Between Towns Road, Cowley, Oxford, OX4 3LY, UK.

    Google Scholar 

  16. Majeske, J.P. (1961). Ampules — pull-seal vs tip-seal, Bull. Parenteral Drug Assn., 15, 10–13.

    Google Scholar 

  17. Mackenzie, A.P., Welkie, D.G., Lagally, M.G., Pace, M. and Elliott, F.I. (1977). On the adequacy of draw-sealing of gas-filled glass ampoules. Int. Symposium on Freeze-Drying of Biological Products, Develop. biol. standard., 36, 151–160. S. Karger: Basel.

    Google Scholar 

  18. Barbaree, J.M. and Smith, S.J. (1981). Loss of vacuum in rubber stoppered vials stored in a liquid nitrogen vapour phase freezer, Cryobiology, 18, 528–531.

    Article  CAS  Google Scholar 

  19. Malpas, E.W. (1968). The stoppering of containers in vacuum. Proc. 4th Int. Vacuum Congr., Manchester, England, pp. 759–762.

    Google Scholar 

  20. Cammack, K.A. and Adams, G.D.J. (1985). Formulation and Storage. In Animal Cell Biotechnology, Vol 2. R.E. Spier and J.B. Griffiths (Eds), pp. 251–288, Academic Press: London.

    Google Scholar 

  21. Greiff, D., Melton, H. and Rowe, T.W.G. (1975). On the sealing of gas-filled glass ampoules, Cryobiology, 12, 1–14.

    Article  CAS  Google Scholar 

  22. High Frequency Discharge Testing Equipment. Electro-Technic Products Inc., 4642 North Ravenswood Avenue, Chicago, IL, USA.

    Google Scholar 

  23. Levine, C.S. (1986). Validation of packaging operations. In Validation of Aseptic Pharmaceutical Processes. F.J. Carleton and J.P. Agalloco (Eds), pp. 545–593, Marcel Dekker.

    Google Scholar 

  24. Butler, L.D., Coupal, J.J. and DeLuca, P.P. (1978). The detection of ampule leakers using short-lived radionuclides, J. Parent. Drug Assoc., 32 (1), 2–8.

    Google Scholar 

  25. Greiff, D. (1989). Lyophilization Technology Handbook. Center for Professional Advancement, Amsterdam, The Netherlands. Center for Professional Advancement, Two Tower Center Boulevard, 9th Floor, East Brunswick, New Jersey 08816, USA.

    Google Scholar 

  26. Franks, F. (1990). Freeze-drying: from empiricism to predictability, Cryo-Letters 11, 93–110.

    Google Scholar 

  27. Morris, G.J. (1987). Direct chilling injury. In The Effects of Low Temperatures on Biological Systems. B.W.W. Grout and G.J. Morris (Eds), pp. 120–146. Edward Arnold.

    Google Scholar 

  28. Franks, F. (1985). Biophysics and Biochemistry at Low Temperatures. Cambridge University Press.

    Google Scholar 

  29. Ashwood-Smith, M.J. (1980). Preservation of microorganisms by freezing, freeze-drying and desiccation. In Low Temperature Preservation in Medicine and Biology. M.J. Ashwood-Smith and J. Farrant (Eds), pp. 221–252. Pitman Medical.

    Google Scholar 

  30. Lee, D.C. and Chapman, D. (1987). The effects of temperature on biological membranes and their models. In Temperature and Animal Cells. K. Bowler and B.J. Fuller (Eds), Symposia of the Society for Experimental Biology, XXXXI, 35–52. The Company of Biologies Ltd: Cambridge, UK.

    Google Scholar 

  31. Franks, F. (1989). Improved freeze-drying: an analysis of basic scientific principles, Process Biochem. 24, iii-vii.

    Google Scholar 

  32. Taylor, M.J. (1981). The meaning of pH at low temperatures, Cryo-Letters, 2, 231–239.

    Google Scholar 

  33. Mazur, P. (1970). Cryobiology: the freezing of biological systems, Science, 168, 939–949.

    Article  CAS  Google Scholar 

  34. Calcott, P.H. and Calcott, K.N. (1983). Involvement of outer membrane proteins in freeze-thaw resistance of Escherichia coli, Can. J. Microbiol., 30, 339–344.

    Article  Google Scholar 

  35. Pikal, M.J. (1991). Freeze-drying of proteins: Part I: process design, Pharm. Technol. Int., 3 (1), 37–43.

    Google Scholar 

  36. deValdez, G.F. and Diekmann, H. (1993). Freeze-drying conditions of starter culters for sourdoughs, Cryobiology, 30, 185–190.

    Article  Google Scholar 

  37. deValdez, G.F., deRuiz-Holgado A.P. and Oliver, G. (1985). Effects of rehydration medium on the recovery of freeze-dried lactic acid bacteria, Applied and Environmental Microbiology, 50(3), 1339–1341.

    CAS  Google Scholar 

  38. Pikal, M.J. (1991). Freeze-drying of proteins: Part II: formulation selection, Pharm. Technol. Int., 3(2), 40–43.

    Google Scholar 

  39. Carpenter, J.F., Arakawa, T. and Crowe, J.H. (1992). Interactions of stabilizing additives with proteins during freeze-thawing and freeze-drying, Dev. Biol. Stand., 74, 225–238.

    CAS  Google Scholar 

  40. Redway, K.F. and Lapage, S.P. (1974). Effect of carbohydrates and related compounds on the long-term preservation of freeze-dried bacteria, Cryobiology, 11(1), 73–79.

    Article  CAS  Google Scholar 

  41. Crowe, J.H., Carpenter, J.F., Crowe, L.M. and Anchordoguy (1990). Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules, Cryobiology, 27, 219–231.

    Article  CAS  Google Scholar 

  42. Meryman, H.T., Williams, R.J. and Douglas, M.St.J, (1977). Freezing injury from ‘solution effects’ and its prevention by natural or artificial cryoprotection, Cryobiology, 14, 287–302.

    Article  CAS  Google Scholar 

  43. Adams, G.D.J, and Irons, L.I. (1992) Practical aspects of formulation: the avoidance of product collapse, Pharm. J., 249, 442–43.

    Google Scholar 

  44. Mackenzie, A.P. (1977). The physico-chemical basis for the freeze-drying process. International Symposium on Freeze-Drying of Biological Products, Develop. biol. Standard., 26, 51–67, S. Karger, Basel.

    Google Scholar 

  45. Bellows, R.J. and King, C.J. (1972). Freeze-drying of aqueous solutions: maximum allowable operating temperatures, Cryobiology, 9, 559–561.

    Article  CAS  Google Scholar 

  46. Adams, G.D.J, and Irons, L.I. (1993). Some implications of structural collapse during freeze-drying using Erwinia caratovora L-asparaginase as a model, J. Chem. Tech. Biotechnol., 58, 71–76.

    CAS  Google Scholar 

  47. Adams, G.D.J. (1991). The loss of substrate from a vial during freeze-drying using Escherichia coli as a trace organism, J. Chem. Tech. Biotechnol., 52, 511–518.

    Google Scholar 

  48. Mackenzie, A.P. (1975). Collapse during freeze-drying — qualitative and quantitative aspects. In Freeze-Drying and Advanced Food Technology. S.A. Goldblith, L. Rey and W.W. Rothmeyer (Eds), pp. 277–307. Academic Press.

    Google Scholar 

  49. Levine, H. and Slade, L. (1988). Water as a plasticizer: physico-chemical aspects of low-moisture polymeric systems, Water Science Reviews, 5, 79–185.

    Google Scholar 

  50. Cox, C.S. (1991). Roles of Maillard Reactions in Diseases. HMSO Publications, UK.

    Google Scholar 

  51. Rowe, T.W.G. and Snowman, J.W. (1978). Edwards Freeze-Drying Handbook. Edwards High Vacuum, Crawley, West Sussex, UK.

    Google Scholar 

  52. Williams, N.A., Lee, Y., Polli, G.P. and Jennings, T.A. (1986). The effects of cooling rate on solid phase transitions and associated vial breakage occurring in frozen mannitol solutions, J. Parenter. Sci. Technol., 40 (4), 135–141.

    CAS  Google Scholar 

  53. Pikal, M.J., Dellerman, K. and Roy, M.L. (1992). Formulation and stability of freeze-dried proteins: effects of moisture and oxygen on the stability of freeze-dried formulations of human growth hormone, Devel. Biol. Stand., 74, 21–37.

    CAS  Google Scholar 

  54. Heckly, R.J. and Quay, J. (1983). Adventitious chemistry at reduced water activities: free radicals and polyhydroxy agents, Cryobiology, 20,(5), 613–624.

    Article  CAS  Google Scholar 

  55. Greiff, D. and Rightsel, W.A. (1968). Stability of influenza virus dried to different contents of residual moisture by sublimation in vacuo, Appl. Microbiol., 16, 835–840.

    CAS  Google Scholar 

  56. Ashwood-Smith, M.J. and Grant, E. (1976). Mutation induction in bacteria by freeze-drying, Cryobiology, 13, 206–213.

    Article  CAS  Google Scholar 

  57. Thorne, A.L.C. (1953). Recovery of caprinized and lapinized rinderpest viruses from condensed water vapour removed during desiccation, Nature, 171, 605.

    Article  Google Scholar 

  58. Laurenson, L., Hickman, S. and Livesey, R.G. (1988). Rotary pump backstreaming: An analytical appraisal of practical results and the factors affecting them, J. Vac. Sci. Technol., A6 (2), 238–242.

    Google Scholar 

  59. Parker, J. and Smith, H.M. (1972). Design and construction of a freeze-drier incorporating improved standards of biological safety, J. Appl. Chem. and Biotechnol., 22, 925–932.

    Article  CAS  Google Scholar 

  60. Snowman, J. (1977). International Symposium on Freeze-Drying of Biological Products. Develop. biol. Standard., 36, 205. S. Karger: Basel.

    Google Scholar 

  61. Rubbo, S.D. and Gardner, J.F. (1965). A review of sterilization and disinfection. Lloyd-Luke (Medical Books): London.

    Google Scholar 

  62. Russel, A.D. (1992). Ultraviolet radiation. In Principles and Practice of Disinfection, Preservation and Sterilization (2nd edn) A.D. Russell, W.B. Hugo and G.A.J. Ayliffe (Eds), pp. 544–556. Blackwell Scientific Publications.

    Google Scholar 

  63. Errico, J.J. (1986). Validation of aseptic processing filters. In Validation of Aseptic Pharmaceutical Processes. F.J. Carleton and J.P. Agalloco (Eds), pp. 427–471. Marcel Dekker.

    Google Scholar 

  64. Wickert, K. (1990). Vacuum break filter testing, Manufacturing Chemist, Sept. pp. 39–41.

    Google Scholar 

  65. Taylor, R., Boardman, C.F.B, and Wallis, R.G. (1978). Sterile freeze-drying in an unclean environment, J. Appl. Chem. Biotechnol., 28, 213–216.

    Google Scholar 

  66. Mellor, J.D. (1978). Fundamentals of Freeze-Drying. Academic Press.

    Google Scholar 

  67. Harris, N.S. (1989). Modern Vacuum Practice. McGraw-Hill.

    Google Scholar 

  68. The rules governing medicinal products in the European Communities, Vol IV: Good Manufacturing Practice for medicinal products (1992). Commission of the European Communties, Luxembourg.

    Google Scholar 

  69. Casella, M.L. and Schmidt-Lorenz, W. (1989). Disinfection with gaseous formaldehyde. Fifth Part: influence of albumin, mucin and blood on the bactericidal and sporocidal effectiveness, Zentralbl. Hyg. Umweltmed., 189 (1), 37–49.

    CAS  Google Scholar 

  70. Rightsel, W.A. and Greiff, D. (1967). Freezing and freeze-drying of viruses, Cryobiology, 3 (6), 423–431.

    Article  CAS  Google Scholar 

  71. Crowshaw, B. (1981). Disinfectant testing — with particular reference to the Rideal-Walker and Kelsey-Sykes tests. In Disinfectants: their use and evaluation of effectiveness. C.H. Collins, M.C. Allwood, S.F. Bloomfield and A. Fox (Eds), pp. 1–15. Academic Press.

    Google Scholar 

  72. Lawrence, C.A. and Block, S.S. (1968). Disinfection, Sterilization and Preservation. Lea and Febiger: Philadelphia.

    Google Scholar 

  73. Block, S. (1977). Disinfection, Sterilization and Preservation (2nd edn). Lea and Febiger, Philadelphia.

    Google Scholar 

  74. Hugo, W.B. and Russell, A.D. (1992). Types of antimicrobial agents. In Principles and Practice of Disinfection, Preservation and Sterilization (2nd edn), A.D. Russell, W.B. Hugo and G.A.J. Ayliffe (Eds) pp. 7–88. Blackwell Scientific Publications.

    Google Scholar 

  75. Shaham, J., Shabtai, P. and Ribak, J. (1992). Cytogenetic changes in ethylene oxide-exposed workers: a challenge to occupational medicine, Isr. J. Med. Sci., 28 (8–9), 602–604.

    CAS  Google Scholar 

  76. Astafyeva, A.K., Vashkov, V.I., Nikiforova, E.N. and Ramkova, N.V. (1967). Methods in Spacecraft sterilization. Life Sciences and Space Research. North-Holland: Amsterdam.

    Google Scholar 

  77. Acheson, E.D., Gardner, M.J., Pannet, B., Barnes, H.R., Osmond, C. and Taylor, C.P. (1984). Formaldehydes in the British Chemical Industry, The Lancet, March, pp. 611–616.

    Google Scholar 

  78. Hoetmer, A., Bruijntjes, J.P., Zwart, A. and Feron, V.J. (1989). Nasal tumours in rats after severe injury to the nasal mucosa and prolonged exposure to 10 ppm formaldehyde, J. Appl. Toxicol., 9 (1), 39–6.

    Article  Google Scholar 

  79. Klapes, N.A. and Vesley, D. (1990). Vapour-phase hydrogen peroxide as a surface decontaminant and sterilant, Appl. Environ. Microbiol., 56 (2), 503–506.

    CAS  Google Scholar 

  80. Kemira Safety, Unit 14B, Harris Business Park, Hambury Road, Stokes Prior, Bromsgrove, UK.

    Google Scholar 

  81. Martindale Protection and Electric Co. Ltd., Neasden Lane, London, NW10 1RN, UK.

    Google Scholar 

  82. Melling, J. and Allner, K. (1981). The containment of microorganisms. In Essays in Applied Microbiology. J.R. Norris and M.H. Richmond (Eds), 11/2–11/32. John Wiley.

    Google Scholar 

  83. La Calhène (GB) Ltd., 22 Hills Road, Cambridge, C82 1JP, UK.

    Google Scholar 

  84. Adams, G.D.J, and Warnes, A. (1993). The sensitivity of genetically modified organisms to freeze-drying: influence of recombinant protein “A” on the survival of Escherichia coli strain JM83 pPA16 (in press).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Adams, G.D.J. (1994). Freeze-drying of biohazardous products. In: Hambleton, P., Melling, J., Salusbury, T.T. (eds) Biosafety in Industrial Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1352-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1352-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4590-2

  • Online ISBN: 978-94-011-1352-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics