Skip to main content

Compressible Vortices

  • Chapter
Fluid Vortices

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 30))

Abstract

Given that vorticity is a core feature of fluid dynamics, it is somewhat surprising that the considerable extension of the latter into the compressible regime during the past half century has not included equally active investigations of compressible vortex flows. The very extensive fluid vortex literature contains only a miniscule percentage of publications dealing with compressible vortices. As implied by the discussion in §I.3.5, this circumstance is doubly curious in view of the additional challenging complexities in both the dynamics and energetics of vortex behavior introduced by the effects of compressibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bannink, W. J. and Nebbeling, C. 1978 Measurements of the supersonic flow field past a slender cone at high angles of attack, AGARD CP-247.

    Google Scholar 

  • Bershader, D. 1988 Shock tube studies of vortex structure and behavior. Paul Vieille Lecture, Proceedings of the 16th International Symposium on Shock Tubes and Waves (ed. H. Grönig), VCH Verlage-gesellschaft, Weinheim, Germany.

    Google Scholar 

  • Bleakney, W., White, D. R., and Griffith, W. C. 1950 Measurements of diffraction of shock waves and resulting loading of structures. J. Appl. Mechanics 17, 439–445.

    Google Scholar 

  • Brown, S. N. 1965 The compressible inviscid leading-edge vortex. J. Fluid Mech. 22, 17–32.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Colonius, T., Lele, S. K., and Moin, P. 1991 The free compressible viscous vortex. J. Fluid Mech. 230, 45–73.

    Article  ADS  MATH  Google Scholar 

  • Dowling and Ingersol 1988 Potential vorticity and layer thickness variations in a flow around Jupiter’s great red spot and white oval BC J. Atmos. Sciences 45, 1380–1396.

    Article  ADS  Google Scholar 

  • Ehrenfried, K., Meier, G. E. A., and Obermeier, F. 1991 Sound produced by vortex-airfoil interaction. Seventeenth European Rotorcraft Forum, Berlin, Germany.

    Google Scholar 

  • Emrich, R. J., and Reichenbach, H. 1969 Photographic study of early stages of vortex formation behind an edge. Proceedings of the Seventh Symposium on Shock Tubes, (ed. I. I. Glass), University of Toronto Press, 741–750.

    Google Scholar 

  • Hall, M. G. 1961 A theory for the core of a leading-edge vortex. J. Fluid Mech. 11, 209–228.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Heister S. D., McDonough, J. M., Karagozian, A. R., and Jenkins, D. W. 1990 The compressible vortex pair. J. Fluid Mech. 220, 339–354.

    Article  ADS  MATH  Google Scholar 

  • Hopfinger, E. J. and van Hijst, G. J. F. 1993 Vortices in rotating fluids. Annual Review of Fluid Mech. 25, 241–289.

    Article  ADS  Google Scholar 

  • Howard, L. N. and Matthews, D. L. 1956 On the vortices produced in shock diffraction. J. Appl. Physics 27, 223–231.

    Article  ADS  MATH  Google Scholar 

  • Jones, D. M., Martin, P. M., and Thornhill, C. K. 1951 A note on the pseudostationary flow behind a strong shock wave diffracting at a corner. Proc. Royal Society Lond.(A) 209, 238–248.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kovasznay, L. S. G. 1953 Turbulence in supersonic flow. J. Aero. Sci. 20, 657–674.

    MATH  Google Scholar 

  • Lele, S. K. 1994 Compressibility effects in turbulence. Annual Review of Fluid Mechanics 26, 211–254.

    Article  MathSciNet  ADS  Google Scholar 

  • Mandella, M. 1987 Experimental and analytical studies of compressible vortices. Ph.D. thesis. Stanford University.

    Google Scholar 

  • Hall, M. G. 1972 Vortex breakdown. Annual Review of Fluid Mechanics 4, pp. 195–218.

    Article  ADS  Google Scholar 

  • Mayer, E. W., and Powell, K. G. 1992 Similarity solutions for viscous vortex cores. J. Fluid Mech. 238, 487–507.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • McCroskey, W. J. 1982 Unsteady airfoils. Annual Review of Fluid Mechanics 14, 285–311.

    Article  ADS  Google Scholar 

  • Melander, M. V., McWilliams, J. C., and Zabusky, N. J. 1987 Axisymmetrization and vorticity gradient intensification of an isolated 2-D vortex through filamentation. J. Fluid Mech. 178, 137–159.

    Article  ADS  MATH  Google Scholar 

  • Moore, D.W. 1985 The effect of compressibility on the speed of propagation of a vortex ring. Proc. Royal Society Lond. (A) 397, pp. 87–97.

    Article  ADS  MATH  Google Scholar 

  • Moore, D. W., and Pullin, D. I. 1987 The compressible vortex pair. J. Fluid Mech. 185, 171–204.

    Article  ADS  MATH  Google Scholar 

  • Morkovin, M. V. 1992 Mach number effects on free and wall turbulent structures in light of instability flow interactions. Studies in Turbulence (eds. Gatski, T.B., Sarkar, S. and Speziale, C.G.) Springer-Verlag, pp. 269–284.

    Chapter  Google Scholar 

  • Overman and Zabusky, N. J. 1982 Evolution and merger of isolated vortex structures. Physics Fluids 25, pp. 1297–1305.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Peake, D. J. and Tobak, M. 1980 Three-dimensional interactions and vortical flows with emphasis on high speeds. NASA TM 81169.

    Google Scholar 

  • Rom, J. 1991 High Angle of Attack Aerodynamics. Springer-Verlag.

    Google Scholar 

  • Rott, N. 1956 Diffraction of a weak shock with vortex generation. J. Fluid Mech. 1, pp. 111–128.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Thompson, P. A. 1972Compressible-Fluid Dynamics RPI Bookstore (private publication).

    Google Scholar 

  • Tijdeman, H. and Seebass, R. 1980 Transonic flow oscillating airfoils. Ann. Rev. Fluid Mech. 12, pp. 181–222.

    Article  ADS  Google Scholar 

  • Werlé, H. 1958 Apercu les Possibilités Expérimentales du Tunnel Hydrodynamique Visualization de l’ONERA. ONERA Tech. Note 48.

    Google Scholar 

  • Werlé, H. 1960 ONERA Rech. Aeron. 74, 23–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bershader, D. (1995). Compressible Vortices. In: Green, S.I. (eds) Fluid Vortices. Fluid Mechanics and Its Applications, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0249-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0249-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4111-9

  • Online ISBN: 978-94-011-0249-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics