Skip to main content

Adaptive immunity in the gastrointestinal tract

  • Chapter
Immunological Aspects of Gastroenterology

Part of the book series: Immunology and Medicine Series ((IMME,volume 31))

Abstract

The adaptive arm of the mucosal immune system is superimposed on the innate immune system of the intestine in a series of difficult but interrelated tasks. It must, a) induce efficient and appropriate immune responses to pathogenic microorganisms; b) tolerate the commensal bacterial intestinal and oropharangeal microflora; c) tolerate food and other environmental antigens. Responses of the systemic immune system can originate from or be modified by the mucosa, this is exemplified by the attenuation of systemic immune responses to a protein that has first been fed orally to the animal (oral tolerance).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bockman DE, Cooper MD. Pinocytosis by epithelium associated with lymphoid follicles in the bursa of Fabricius, appendix, and Peyer’s patches. An electron microscopic study. Am J Anat 1973;136:455–77.

    Article  PubMed  CAS  Google Scholar 

  2. Owen RL. Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer’s patches in the normal unobstructed mouse intestine: an ultrastructural study. Gastroenterology 1977;72:440–51.

    PubMed  CAS  Google Scholar 

  3. Neutra MR, Phillips TL, Mayer EL, Fishkind DJ. Transport of membrane-bound macromolecules by M cells in follicle-associated epithelium of rabbit Peyer’s patch. Cell Tissue Res 1987;247:537–46.

    Article  PubMed  CAS  Google Scholar 

  4. Wolf JL, Rubin DH, Finberg R, Kauffman RS, Sharpe AH, Trier JS, et al. Intestinal M cells: a pathway for entry of reovirus into the host. Science 1981;212:471–2.

    Article  PubMed  CAS  Google Scholar 

  5. Mendelsohn CL, Wimmer E, Racaniello VR. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 1989;56:855–65.

    Article  PubMed  CAS  Google Scholar 

  6. Jones BD, Ghori N, Falkow S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J Exp Med 1994;180:15–23.

    Article  PubMed  CAS  Google Scholar 

  7. Wassef JS, Keren DF, Mailloux JL. Role of M cells in initial antigen uptake and in ulcer formation in the rabbit intestinal loop model of shigellosis. Infect Immun 1989;57:858–63.

    PubMed  CAS  Google Scholar 

  8. Neutra MR, Pringault E, Kraehenbuhl JP. Antigen sampling across epithelial barriers and induction of mucosal immune responses. Ann Rev Immunol. 1996;14:275–300.

    Article  CAS  Google Scholar 

  9. Pierce NF, Gowans JL. Cellular kinetics of the intestinal immune response to cholera toxoid in rats. J. Exp. Med. 1975;142:1550–63.

    Article  PubMed  CAS  Google Scholar 

  10. Guy-Grand D, Griscelli C, Vassalli P. The mouse gut T lymphocyte, a novel type of T cell. Nature, origin, and traffic in mice in normal and graft-versushost conditions. J Exp Med 1978;148:1661–77.

    Article  PubMed  CAS  Google Scholar 

  11. Robertson SM, Cebra JJ. A model for local immunity. Ricerca Clin. Lab. 1976;6:105–19.

    Google Scholar 

  12. Husband AJ, Gowans JL. The origin and antigen-dependent distribution of IgA-containing cells in the intestine. J. Exp. Med. 1978;148:1146–60.

    Google Scholar 

  13. Kanamori Y, Ishimaru K, Nanno M, Maki K, Ikuta K, Nariuchi H, et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thyl+ lympho-hemopoietic progenitors develop. J Exp Med 1996;184:1449–59.

    Article  PubMed  CAS  Google Scholar 

  14. Saito H, Kanamori Y, Takemori T, Nariuchi H, Kubota E, TakahashiIwanaga H, et al. Generation of intestinal T cells from progenitors residing in gut cryptopatches. Science 1998;280:275–8.

    Article  PubMed  CAS  Google Scholar 

  15. Helgeland L, Vaage JT, Rolstad B, Halstensen TS, Midtvedt T, Brandtzaeg P. Regional phenotypic specialization of intraepithelial lymphocytes in the rat intestine does not depend on microbial colonization. Scand J Immunol 1997;46:349–57.

    Article  PubMed  CAS  Google Scholar 

  16. Helgeland L, Vaage JT, Rolstad B, Midtvedt T, Brandtzaeg P. Microbial colonization influences composition and T-cell receptor V beta repertoire of intraepithelial lymphocytes in rat intestine. Immunology 1996;89:494–501.

    Article  PubMed  CAS  Google Scholar 

  17. Poussier P, Julius M. Intestinal intraepithelial lymphocytes: the plot thickens. J Exp Med 1994;180:1185–9.

    Article  PubMed  CAS  Google Scholar 

  18. Regnault A, Cumano A, Vassalli P, Guy-Grand D, Kourilsky P. Oligoclonal repertoire of the CD8 alpha alpha and the CD8 alpha beta TCR-alpha/beta murine intestinal intraepithelial T lymphocytes: evidence for the random emergence of T cells. J Exp Med 1994;180:1345–58.

    Article  PubMed  CAS  Google Scholar 

  19. Park SH, Guy-Grand D, Lemonnier FA, Wang CR, Bendelac A, Jabri B. Selection and expansion of CD8alpha/alpha T cell receptor alpha/beta intestinal intraepithelial lymphocytes in the absence of both classical major histocompatibility complex class I and nonclassical CD1 molecules. J Exp Med 1999;190:885–90.

    Article  PubMed  CAS  Google Scholar 

  20. Sydora BC, Jamieson BD, Ahmed R, Kronenberg M. Intestinal intraepithelial lymphocytes respond to systemic lymphocytic choriomeningitis virus infection. Cell Immunol 1996;167:161–9.

    Article  PubMed  CAS  Google Scholar 

  21. London SD, Cebra JJ, Rubin DH. Intraepithelial lymphocytes contain virus-specific, MHC-restricted cytotoxic cell precursors after gut mucosal immunization with reovirus serotype 1/Lang. Reg Immunol 1989;2:98–102.

    PubMed  CAS  Google Scholar 

  22. Stokes CR, Soothill JF, Turner MW. Immune exclusion is a function of IgA. Nature 1975;255:745–6.

    Article  PubMed  CAS  Google Scholar 

  23. Mazanec MB, Coudret CL, Fletcher DR. Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J Virol 1995;69:1339–43.

    PubMed  CAS  Google Scholar 

  24. Hayakawa K, Hardy RR, Herzenberg LA. Progenitors for Ly-1 B cells are distinct from progenitors for other B cells. J Exp Med 1985;161:1554–68.

    Article  PubMed  CAS  Google Scholar 

  25. Kroese FGM, Butcher EC, Stall AM, Lalor PA, Adams S, Herzenberg LA. Many of the IgA producing plasma cells in the murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int Immunol. 1988;1:7584.

    Google Scholar 

  26. Qin XF, Schwers S, Yu W, Papavasiliou F, Suh H, Nussenzweig A, et al. Secondary V(D)J recombination in B-1 cells. Nature 1999;397:355–9.

    Article  PubMed  CAS  Google Scholar 

  27. Lam KP, Rajewsky K. B cell antigen receptor specificity and surface density together determine B-1 versus B-2 cell development. J Exp Med 1999;190:471–8.

    Google Scholar 

  28. Elson CO, Ealding W. Cholera toxin feeding did not induce oral tolerance in mice and abrogated oral tolerance to an unrelated protein antigen. J Immunol 1984;133:2892–7.

    PubMed  CAS  Google Scholar 

  29. Elson CO, Ealding W. Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. J Immunol 1984;132:2736–41.

    PubMed  CAS  Google Scholar 

  30. Lycke N, Holmgren J. Intestinal mucosal memory and presence of memory cells in lamina propria and Peyer’s patches in mice 2 years after oral immunization with cholera toxin. Scand J Immunol 1986;23:611–6.

    Article  PubMed  CAS  Google Scholar 

  31. Clements JD, Hartzog NM, Lyon FL. Adjuvant activity of Escherichia coli heat-labile enterotoxin and effect on the induction of oral tolerance in mice to unrelated protein antigens. Vaccine 1988;6:269–77.

    Article  PubMed  CAS  Google Scholar 

  32. Keren DF, McDonald RA, Carey JL. Combined parenteral and oral immunization results in an enhanced mucosal immunoglobulin A response to Shigella flexneri. Infection & Immunity 1988;56:910–5.

    CAS  Google Scholar 

  33. Boyaka PN, Marinaro M, Jackson RJ, Menon S, Kiyono H, Jirillo E, et al. IL-12 is an effective adjuvant for induction of mucosal immunity. J Immunol 1999;162:122–8.

    PubMed  CAS  Google Scholar 

  34. Lycke N, Eriksen L, Holmgren J. Protection against cholera toxin after oral immunisation is thymus dependent and associated with intestinal production of neutralising IgA antitoxin. Scand. J. Immunol. 1987;25:413–9.

    Google Scholar 

  35. Guy-Grand D, Griscelli C, Vassalli P. Peyer’s patches, gut IgA plasma cells and thymic function: study in nude mnice bearing thymic grafts. J. Immunol. 1975;115:361–4.

    PubMed  CAS  Google Scholar 

  36. Franco M, Greenberg HB. Immunity to rotavirus in T cell deficient mice. Virology 1997;238:169–79.

    Article  PubMed  CAS  Google Scholar 

  37. Hörnquist CE, Ekman L, Grdic KD, Schön K, Lycke NY. Paradoxical IgA immunity in CD4-deficient mice. J Immunol 1995;155:2877–87.

    PubMed  Google Scholar 

  38. Coffman RL, Lebman DA, Shrader B. Transforming growth factor ß specifically enhances IgA production by lipopolysaccharide stimulated murine B lymphocytes. J. Exp. Med. 1989;170:1039–44.

    Article  PubMed  CAS  Google Scholar 

  39. Wakatsuki Y, Strober W. Effect of downregulation of germline transcripts on immunoglobulin A isotype differentiation. J Exp Med 1993;178:129–38.

    Article  PubMed  CAS  Google Scholar 

  40. Kunimoto DY, Harriman GR, Strober W. Regulation of IgA differentiation in CH12LX B cells by lymphokines: IL-4 induces membrane IgM-positive CH12LX cells to express membrane IgA and IL-5 induces membrane IgApositive CH12LX cells to secrete IgA. J Immunol 1988;141:713–20.

    PubMed  CAS  Google Scholar 

  41. Beagley KW, Eldridge JH, Kiyono H, Everson MP, Koopman WJ, Honjo T, et al. Recombinant murine IL-5 induces high rate IgA synthesis in cycling IgA-positive Peyer’s patch B cells. J Immunol 1988;141:2035–42.

    PubMed  CAS  Google Scholar 

  42. Defrance T, Vanbervliet B, Briere F, Durand I, Rousset F, Banchereau J. Interleukin 10 and transforming growth factor beta cooperate to induce antiCD40-activated naive human B cells to secrete immunoglobulin. J Exp Med 1992;175:671–82.

    Google Scholar 

  43. van Ginkel FW, Wahl SM, Kearney JF, Kweon MN, Fujihashi K, Burrows PD, et al. Partial IgA-deficiency with increased Th2-type cytokines in TGFbeta 1 knockout mice. J Immunol 1999;163:1951–7.

    PubMed  Google Scholar 

  44. Vajdy M, Kosco-Vilbois MH, Kopf M, Kohler G, Lycke N. Impaired mucosal immune responses in interleukin 4-targeted mice. J Exp Med 1995;181:41–53.

    Article  PubMed  CAS  Google Scholar 

  45. Okahashi N, Yamamoto M, Vancott JL, Chatfield SN, Roberts M, Bluethmann H, et al. Oral immunization of interleukin-4 (IL-4) knockout mice with a recombinant Salmonella strain or cholera toxin reveals that CD4+ Th2 cells producing IL- 6 and IL-10 are associated with mucosal immunoglobulin A responses. Infection & Immunity 1996;64:1516–25.

    CAS  Google Scholar 

  46. Mowat AM, Smith RE, Donachie AM, Furrie E, Grdic D, Lycke N. Oral vaccination with immune stimulating complexes. Immunology Letters 1999;65:133–40.

    Article  PubMed  CAS  Google Scholar 

  47. Ramsay AJ, Husband AJ, Ramshaw IA, Bao S, Matthaei KI, Koehler G, et al. The role of interleukin-6 in mucosal IgA antibody responses in vivo. Science 1994;264:561–3.

    Article  PubMed  CAS  Google Scholar 

  48. Bromander AK, Ekman L, Kopf M, Nedrud JG, Lycke NY. IL-6-deficient mice exhibit normal mucosal IgA responses to local immunizations and Helicobacter felis infection. J Immunol 1996;156:4290–7.

    Google Scholar 

  49. Weinstein PD, Schweitzer PA, Cebra-Thomas A, Cebra JJ. Molecular genetic features reflecting the preference for isotype switching to IgA expression by Peyer’s patch germinal center B cells. Int Immunol 1991;3:1253–63.

    Article  PubMed  CAS  Google Scholar 

  50. Schrader CE, Cebra JJ. Dendritic cell dependent expression of IgA by clones in T/B microcultures. Adv Exp Med Biol 1993;329.

    Google Scholar 

  51. Weinstein PD, Cebra JJ. The preference for switching to IgA expression by Peyer’s patch germinal center B cells is likely due to the intrinsic influence of their microenvironment. J Immunol 1991;147:4126–35.

    PubMed  CAS  Google Scholar 

  52. Kitamura D, Roes J, Kuhn R, Rajewsky K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 1991;350:423–6.

    Article  PubMed  CAS  Google Scholar 

  53. Shroff KE, Meslin K, Cebra JJ. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infection & Immunity 1995;63:3904–13.

    CAS  Google Scholar 

  54. Cebra JJ, Bos NA, Cebra ER, Cuff CF, Deenen GJ, Kroese FGM, et al. Development of components of the mucosal immune system in SCID recipient mice. Adv Exp Med Biol 1994;355.

    Google Scholar 

  55. Johansen FE, Pekna M, Norderhaug IN, Haneberg B, Hietala MA, Krajci P, et al. Absence of epithelial immunoglobulin A transport, with increasedosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J Exp Med 1999;190:915–22.

    Google Scholar 

  56. Winner Ld, Mack J, Weltzin R, Mekalanos JJ, Kraehenbuhl JP, Neutra MR. New model for analysis of mucosal immunity: intestinal secretion of specific monoclonal immunoglobulin A from hybridoma tumors protects against Vibrio cholerae infection. Infection & Immunity 1991;59:977–82.

    Google Scholar 

  57. Phalipon A, Kaufmann M, Michetti P, Cavaillon JM, Huerre M, Sansonetti P, et al. Monoclonal immunoglobulin-A antibody-directed against serotypespecific epitope of Shigella flexneri lipopolysaccharide protects against murine experimental Shigellosis. J Exp Med 1995;182:769–78.

    Article  PubMed  CAS  Google Scholar 

  58. Czinn SJ, Cai A, Nedrud JG. Protection of germ-free mice from infection by helicobacter felis after active oral or passive IgA immunization. Vaccine 1993;11:637–42.

    Article  PubMed  CAS  Google Scholar 

  59. Herremans T, Reimerink JHJ, Buisman AM, Kimman TG, Koopmans MPG. Induction of mucosal immunity by inactivated poliovirus vaccine is dependent on previous mucosal contact with live virus. J Immunol 1999;162:5011–8.

    PubMed  CAS  Google Scholar 

  60. Herremans M, Van Loon AM, Reimerink JHJ, Rumke HC, Van der Avoort H, Kimman TG, et al. Poliovirus-specific immunoglobulin A in persons vaccinated with inactivated poliovirus vaccine in the Netherlands. Clinical & Diagnostic Lab Immunol 1997;4:499–503.

    CAS  Google Scholar 

  61. Brokstad KA, Cox RJ, Olofsson J, Jonsson R, Haaheim LR. Parenteral influenza vaccination induces a rapid systemic and local immune response. J Infect Dis 1995;171:198–203.

    Google Scholar 

  62. Doring G, Pfeiffer C, Weber U, Mohr-Pennert A, Dorner F. Parenteral application of a Pseudomonas aeruginosa flagella vaccine elicits specific anti-flagella antibodies in the airways of healthy individuals. Am J Respir Crit Care Med 1995;151:983–5.

    PubMed  CAS  Google Scholar 

  63. Ishida S, Feng NG, Tang BZ, Gilbert JM, Greenberg HB. Quantification of systemic and local immune responses to individual rotavirus proteins during rotavirus infection in mice. J Clin Microbiol 1996;34:1694–700.

    PubMed  CAS  Google Scholar 

  64. Franco MA, Greenberg HB. Role of B cells and cytotoxic T lymphocytes in clearance of and immunity to rotavirus infection in mice. J. Virol. 1995;69:7800–6.

    PubMed  CAS  Google Scholar 

  65. Takase H, Murakami Y, Endo A, Ikeuchi T. Antibody responses and protection in mice immunized orally against influenza virus. Vaccine 1996;14:1651–6.

    Article  PubMed  CAS  Google Scholar 

  66. Tamura S, Funato H, Hirabayashi Y, Suzuki Y, Nagamine T, Aizawa C, et al. Cross-protection against influenza-A virus-infection by passively transferred respiratory-tract IgA antibodies to different hemagglutinin molecules. Eur J Immunol 1991;21:1337–44.

    Article  PubMed  CAS  Google Scholar 

  67. Liew FY, Russell SM, Appleyard G, Brand CM, Beale J. Cross-protection in mice infected with influenza-A virus by the respiratory route is correlated with local IgA antibody rather than serum antibody or cyto-toxic T-cell reactivity. Eur J Immunol 1984;14:350–6.

    Article  PubMed  CAS  Google Scholar 

  68. Renegar KB, Small PA. Passive transfer of local immunity to influenza-virus infection by IgA antibody. J Immunol 1991;146:1972–8.

    PubMed  CAS  Google Scholar 

  69. Mbawuike IN, Pacheco S, Acuna CL, Switzer KC, Zhang YX, Harriman GR. Mucosal immunity to influenza without IgA: An IgA knockout mouse model. J Immunol 1999;162:2530–7.

    PubMed  CAS  Google Scholar 

  70. Parr MB, Harriman GR, Parr EL. Immunity to vaginal HSV-2 infection in immunoglobulin A knockout mice. Immunology 1998;95:208–13.

    Article  PubMed  CAS  Google Scholar 

  71. Clark JA, Callicoat PA, Brenner NA, Bradley CA, Smith DM, Jr. Selective IgA deficiency in blood donors. Am J Clin Pathol 1983;80:210–3.

    PubMed  CAS  Google Scholar 

  72. Olsson PG, Hammarstrom L, Cox DW, Smith CIE. Involvement of both HLA and Ig heavy chain haplotypes in human IgA deficiency. Immunogenetics 1992;36:389–95.

    Article  PubMed  CAS  Google Scholar 

  73. Cunningham-Rundles C. Genetic aspects of immunoglobulin A deficiency. Adv Human Gen 1990;19.

    Google Scholar 

  74. Schaffer FM, Monteiro RC, Volanakis JE, Cooper MD. IgA deficiency. Immunodefic Rev 1991;3:15–44.

    Google Scholar 

  75. Strober W, Krakauer R, Klaeveman HL, Reynolds HY, Nelson DL. Secretory component deficiency. A disorder of the IgA immune system. N Engl J Med 1976;294:351–6.

    Article  PubMed  CAS  Google Scholar 

  76. Fiore M, Pera C, Delfino L, Scotese I, Ferrara GB, Pignata C. DNA typing of DQ and DR alleles in IgA-deficient subjects. Eur J Immunogen 1995;22:40311

    Article  Google Scholar 

  77. Gerbase-Delima M, Pinto LC, Grumach A, Carneiro-Sampaios MMS. HLA antigens and haplotypes in IgA-deficient Brazilian paediatric patients. Eur J Immunogen 1998;25:281–5.

    Article  PubMed  CAS  Google Scholar 

  78. Olerup O, Smith CI, Hammarstrom L. Different amino acids at position 57 of the HLA-DQ beta chain associated with susceptibility and resistance to IgA deficiency. Nature 1990;347:289–90.

    Article  PubMed  CAS  Google Scholar 

  79. Olerup O, Smith CIE, Bjorkander J, Hammarstrom L. Shared HLA class II-associated genetic susceptibility and resistance, related to the FILA-DQB1 gene, in IgA deficiency and common variable immunodeficiency. Proc Natl Acad Sci 1992;89:10653–7.

    Article  PubMed  CAS  Google Scholar 

  80. Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 1987;329:599–604.

    Google Scholar 

  81. Keyeux G, Lefranc MP, Chevailler A, Lefranc G. Molecular analysis of the IGHA and MHC class III region genes in one family with IgA and C4 deficiencies. Exp Clin Immunogen 1990;7:170–80.

    CAS  Google Scholar 

  82. Volanakis JE, Zhu ZB, Schaffer FM, Macon KJ, Palermos J, Barger BO, et al. Major histocompatibility complex class III genes and susceptibility to immunoglobulin A deficiency and common variable immunodeficiency. J Clin Invest 1992;89:1914–22.

    Article  PubMed  CAS  Google Scholar 

  83. Liblau RS, Bach JF. Selective IgA deficiency and autoimmunity. Int Arch Allerg Immunol 1992;99:16–27.

    Article  CAS  Google Scholar 

  84. Rankin ECC, Isenberg DA. IgA deficiency and SLE: Prevalence in a clinic population and a review of the literature. Lupus 1997;6:390–4.

    Article  PubMed  CAS  Google Scholar 

  85. Buckley RH, Dees SC. Correlation of milk precipitins with IgA deficiency. N Engl J Med 1969;281:465–9.

    Article  PubMed  CAS  Google Scholar 

  86. ADAPTIVE IMMUNITY IN THE GASTROINTESTINAL TRACT

    Google Scholar 

  87. Briere F, Bridon JM, Chevet D, Souillet G, Bienvenu F, Guret C, et al. Interleukin 10 induces B lymphocytes from IgA-deficient patients to secrete IgA. J Clin Invest 1994;94:97–104.

    Article  PubMed  CAS  Google Scholar 

  88. Friman V, Hanson LA, Bridon JM, Tarkowski A, Banchereau J, Briere F. IL- 10-driven immunoglobulin production by B lymphocytes from IgA- deficient individuals correlates to infection proneness. Clin Exp Immunol 1996;104:432–8.

    Article  PubMed  CAS  Google Scholar 

  89. Vorechovsky I, Zetterquist H, Paganelli R, Koskinen S, Webster ADB, Bjorkander J, et al. Family and linkage study of selective IgA deficiency and common variable immunodeficiency. Clin Immunol Immunopathol 1995;77:185–92.

    Article  PubMed  CAS  Google Scholar 

  90. Slyper AH, Pietryga D. Conversion of selective IgA deficiency to common variable immunodeficiency in an adolescent female with 18q deletion syndrome [letter]. Eur J Pediatr 1997;156:155–6.

    PubMed  CAS  Google Scholar 

  91. Kondratenko I, Amlot PL, Webster ADB, Farrant J. Lack of specific antibody response in common variable immunodeficiency (CVID) associated with failure in production of antigen-specific memory T cells. Clin Exp Immunol 1997;108:9–13.

    Article  PubMed  CAS  Google Scholar 

  92. Macaulay AE, DeKruyff RH, Umetsu DT. Antigen-primed T cells from B cell-deficient JHD mice fail to provide B cell help. J Immunol 1998;160:1694–700.

    PubMed  CAS  Google Scholar 

  93. Thon V, Wolf HM, Sasgary M, Litzman J, Samstag A, Hauber I, et al. Defective integration of activating signals derived from the T cell receptor (TCR) and costimulatory molecules in both CD4+ and CD8+ T lymphocytes of common variable immunodeficiency (CVID) patients. Clin Exp Immunol 1997;110:174–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Macpherson, A.J.S., Maloy, K.J. (2001). Adaptive immunity in the gastrointestinal tract. In: Mahida, Y.R. (eds) Immunological Aspects of Gastroenterology. Immunology and Medicine Series, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0790-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0790-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3852-2

  • Online ISBN: 978-94-010-0790-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics