Skip to main content

Trends and rates of microevolution in plants

  • Chapter
Microevolution Rate, Pattern, Process

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 8))

Abstract

Evidence for rapid evolutionary change in plants in response to changing environmental conditions is widespread in the literature. However, evolutionary change in plant populations has not been quantified using a rate metric that allows for comparisons between and within studies. One objective of this paper is to estimate rates of evolution using data from previously published studies to begin a foundation for comparison and to examine trends and rates of microevolution in plants. We use data gathered from studies of plant adaptations in response to heavy metals, herbicide, pathogens, changes in pH, global change, and novel environments. Rates of evolution are estimated in the form of two metrics, darwins and haldanes. A second objective is to demonstrate how estimated rates could be used to address specific microevolutionary questions. For example, we examine how evolutionary rate changes with time, life history correlates of evolutionary rates, and whether some types of traits evolve faster than others. We also approach the question of how rates can be used to predict patterns of evolution under novel selection pressures using two contemporary examples: introductions of non-native species to alien environments and global change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbott, R.J., 1992. Plant invasions interspecific hybridization and the evolution of new plant taxa. Trends Ecol. Evol. 7: 401–405.

    Article  CAS  PubMed  Google Scholar 

  • Antonovics, J. & A.D. Bradshaw, 1970. Evolution in closely adjacent plant populations. VII Clinal patterns of a mine boundary. Heredity 25: 349–362.

    Article  Google Scholar 

  • Arnold, M.L., 1997. Natural Hybridization and Evolution. Oxford University Press, New York.

    Google Scholar 

  • Barnes, J., J. Bender, T. Lyons & A. Borland. 1999. Natural and man-made selection for air pollution resistance. J. Exp. Bot. 50: 1423–1435.

    Article  CAS  Google Scholar 

  • Barrett, S.C.H., 1983. Crop mimicry in weeds. Econ. Bot. 37: 255–282.

    Article  Google Scholar 

  • Barrett, S.C.H., 2000. Microevolutionary influences of global changes on plant invasions, pp. 115–139 in Invasive Species in a Changing World, edited by H.A. Mooney & R.J. Hobbs. Island Press, Washington D.C.

    Google Scholar 

  • Baur, B. & A. Erhardt, 1995. Habitat fragmentation and habitat alterations: principal threats to most animal and plant species. GAIA 4: 221–226.

    Google Scholar 

  • Bazzaz, F.A., M. Jasieński, S.C. Thomas & P. Wayne, 1995. Microevolutionary responses in experimental populations of plants to CO2-enriched environments: parallel results from model systems. Proc. Natl. Acad. Sci. USA 92: 8161–8165.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bell, J.N.B., M.R. Ashmore & G.B. Wilson, 1991. Ecological genetics and chemical modifications of the atmosphere, pp. 33–59 in Ecological Genetics and Air Pollution, edited by G.E. Taylor, L.F. Pitelka & M.T. Clegg. Springer-Verlag, New York, Berlin, London, Tokyo.

    Chapter  Google Scholar 

  • Blossey, B. & R. Nötzold, 1995. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J. Ecol. 83: 887–889.

    Article  Google Scholar 

  • Bradshaw, A.D. & T. McNeilly, 1991a. Evolution in relation to environmental stress, pp. 11–32 in Ecological Genetics and Air Pollution, edited by G.E. Taylor, L.F. Pitelka & M.T. Clegg. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Bradshaw, A.D. & T. McNeilly, 1991b. Evolutionary response to global climate change. Ann. Bot. 67: 5–14.

    Google Scholar 

  • Burdon, J.J. & J.N. Thompson, 1995. Changed patterns of resistance in a population of Linum marginale attacked by the rust pathogen Melampsora lini. J. Ecol. 83: 199–206.

    Article  Google Scholar 

  • Burger, R. & M. Lynch, 1995. Evolution and extinction in a changing environment: a quantitative-genetic analysis. Evolution 49: 151–163.

    Article  Google Scholar 

  • Carney, S.E., K.A. Gardner & L.H. Rieseberg, 2000. Evolutionary changes over the fifty-year history of a hybrid population of sunflowers (Helianthus). Evolution 54: 462–474.

    CAS  PubMed  Google Scholar 

  • Carroll, S.P., H. Dingle, T.R. Famula & C.W. Fox, 2001. Genetic architecture of adaptive differentiation in evolving host races of the Soapberry Bug, Jadera haematoloma. Genetica 112-113: 257–272.

    Article  CAS  PubMed  Google Scholar 

  • Cody, M.L. & J.M. Overton, 1996. Short-term evolution of reduced dispersal in island plant populations. J. Ecol. 84: 53–61.

    Article  Google Scholar 

  • Crooks, J. & M.E. Soule, 1996. Lag times in population explosions of invasive species: causes and implications, pp. 39–46 in Proceedings of the Norway/UN Conference on Alien Species, edited by O.T. Sanlund, P.T. Schei, & Å. Viken. Directorate for Nature Management and Norwegian Institute for Nature Research, Trondheim, Norway.

    Google Scholar 

  • Curtis, P.S., D.J. Klus, S. Kalisz & S.J. Tonser, 1996. Intraspe-cific variation in CO2 responses in Raphanus raphanistrum and Pkmtago lanceolata: Assessing the potential for evolutionary change with rising atmospheric CO2, pp. 13–22 in Carbon Dioxide, Populations, and Communities, edited by C. Körner & F.A. Bazzaz. Academic Press, San Diego.

    Chapter  Google Scholar 

  • Daehler, C.C. & D.R. Strong, 1997. Reduced herbivore resistance in introduced smooth cordgrass (Spartina alterniflora) after a century of herbivore-free growth. Oecologia 110: 99–108.

    Article  Google Scholar 

  • Davies, M.S. & R.W. Snaydon, 1976. Rapid population differentiation in a mosaic environment. III. Measures of selection pressures. Heredity 36: 59–66.

    Article  Google Scholar 

  • Davis, M.B. & R.G. Shaw. 2001. Range shifts and adaptive responses to quaternary climate change. Science 292: 673–679.

    Article  CAS  PubMed  Google Scholar 

  • Davison, A.W. & J.D. Barnes. 1998. Effects of ozone on wild plants. New Phytol. 139: 135–151.

    Article  CAS  Google Scholar 

  • Davison, A.W. & K. Reiling, 1995. A rapid change in ozone resistance of Pkmtago major after summers with high ozone concentrations. New Phytol. 131: 337–344.

    Article  CAS  Google Scholar 

  • Debinski, D.M. & R.D. Holt, 2000. A survey and overview of habitat fragmentation experiments. Conserv. Biol. 14: 342–355.

    Article  Google Scholar 

  • Dudley, J.W., 1977. Seventy-six generations of selection for oil and protein percentage in maize, pp. 459–473 in Proceedings of the International Conference on Quantitative Genetics, edited by E. Pollak, O. Kempthorne & T.B. Bailey. Iowa State University, Ames, IA.

    Google Scholar 

  • Dudley, J.W. & R.J. Lambert. 1992. Ninety generations of selection for oil and protein in maize. Maydica 37: 1–7.

    Google Scholar 

  • Ernst, W.H.O., 1999. Evolution of plants on soils anthropogenic-ally contaminated by heavy metals, pp. 13–27 in Plant Evolution in Man-made Habitats, edited by L.W.D. van Raamsdonk & J.C.M. den Nijs. Hugo de Vries Laboratory, Amsterdam, The Netherlands.

    Google Scholar 

  • Erskine, W., J. Smartt & F. Muehlbauer, 1994. Mimicry of lentil and the domestication of common vetch and grass pea. Econ. Bot. 48: 326–332.

    Article  Google Scholar 

  • Frey, K.J. & J.B. Holland, 1999. Nine cycles of recurrent selection for increased groat-oil content in oat. Crop Sci. 39: 1636–1641.

    Article  Google Scholar 

  • Gilchrist, G.W., R.B. Huey & L. Serra. 2001. Rapid evolution of wing size clines in Drosophila subobscura. Genetica 112-113: 273–286.

    Article  CAS  PubMed  Google Scholar 

  • Gingerich, P.D.. 1983. Rates of evolution: effects of time and temporal scaling. Science 222: 159–161.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin, B.J., A.J. McAllister & L. Fahrig, 1999. Predicting invasiveness of plant species based on biological information. Conserv. Biol. 13:422–426.

    Article  Google Scholar 

  • Grant, P.R. & B.R. Grant, 1995. Predicting microevolutionary responses to directional selection on heritable variation. Evolution 49:241–251.

    Article  Google Scholar 

  • Haidane, J.B.S., 1949. Suggestions as to quantitative measurement of rates of evolution. Evolution 3: 51–56.

    Article  Google Scholar 

  • Haugen, T.O. & L.A. Vøllestad, 2001. A century of life-history evolution in grayling. Genetica 112-113: 475–491.

    Article  CAS  PubMed  Google Scholar 

  • Heap, I.M., 1997. The occurrence of herbicide-resistant weeds worldwide. Pest. Sci. 51: 235–243.

    Article  CAS  Google Scholar 

  • Hendry, A.P. & M.T. Kinnison, 1999. The pace of modern life: measuring rates of microevolution. Evolution 53: 1637–1653.

    Article  Google Scholar 

  • Houle, D., 1992. Comparing evolvability and variability of quantitative traits. Genetics 130: 195–204.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huey, R.B., G.W. Gilchrist, M.L. Carlson, D. Berrigan & L. Serra, 2000. Rapid evolution of a geographic cline in size in an introduced fly. Science 287: 308–309.

    Article  CAS  PubMed  Google Scholar 

  • Jain, S.K. & A.D. Bradshaw, 1966. Evolutionary divergence among adjacent plant populations. I: evidence and its theoretical analysis. Heredity 21: 407–441.

    Article  Google Scholar 

  • Kiang, Y.T., 1982. Local differentiation of Anthoxanthum odoratum L. populations on roadsides. Am. Midland Natural. 107: 340–350.

    Article  Google Scholar 

  • Kingsolver, J.G., H.E. Hoekstra, J.M. Hoekstra, D. Berrigan, S.N. Vignieri, C.E. Hill, A. Hoang, P. Gilbert & P. Beerli, 2001. The strength of phenotypic selection in natural populations. Am. Natural. 157: 245–261.

    Article  CAS  Google Scholar 

  • Kinnison, M.T. & A.P. Hendry, 2001. The pace of modern life. II: from rates to pattern and process. Genetica 112-113: 145–164.

    Article  CAS  PubMed  Google Scholar 

  • Kowarik, I., 1995. Time lags in biological invasions with regard to the success and failure of invasive species, pp. 15–38 in Plant Invasions: General Aspects and Special Problems, edited by P. Pysek, K. Prach, M. Rejmánek & M. Wade. SPB Academic Publishing, Amsterdam, The Netherlands.

    Google Scholar 

  • Lambert, R.J., D.E. Alexander, E.L. Mollring & B. Wiggens, 1997. Selection for increased oil concentration in maize kernels and associated changes in several kernel plants. Maydica 42: 39–43.

    Google Scholar 

  • Linhart, Y.B. & M.C. Grant, 1996. Evolutionary significance of local genetic differentiation in plants. Ann. Rev. Ecol. Systemat. 27: 237–277.

    Article  Google Scholar 

  • Lynch, M., 1990. The rate of morphological evolution in mammals from the standpoint of the neutral expectation. Am. Natural. 136: 727–741.

    Article  Google Scholar 

  • Mack, R.N., 1996. Predicting the identity and fate of plant invaders: emergent and emerging approaches. Biol. Conserv. 78: 107–121.

    Article  Google Scholar 

  • Macnair, M.R., S.E. Smith & Q.J. Cumbes, 1993. Heritability and distribution of variation in degree of copper tolerance in Mimulus guttatus at Copperopolis, California. Heredity 71: 445–455.

    Article  CAS  Google Scholar 

  • Mallory-Smith, C., P. Hendrickson & G. Mueller-Warrant, 1999. Cross-resistance of primisulfuron-resistant Bromus tectorum L. (downy brome) to sulfosulfuron. Weed Sci. 47: 256–257.

    CAS  Google Scholar 

  • Menlä, J., B.C. Sheldon & L.E.B. Kruuk. 2001. Explaining stasis: microevolutionary studies in natural populations. Genetica 112-113: 199–222.

    Article  Google Scholar 

  • Mousseau, T.A. & D.A. Roff, 1987. Natural selection and the heritability of fitness components. Heredity 59: 181–197.

    Article  PubMed  Google Scholar 

  • Neuffer, B. & M. Linde, 1999. Capsella bursa-pastoris-colonization and adaptation; a globe trotter conquers the world, pp. 49–72 in Plant Evolution in Man-made Habitats, edited by L.W.D. van Raamsdonk & J.C.M. den Nijs. Hugo de Vries Laboratory, Amsterdam, The Netherlands.

    Google Scholar 

  • Nordal, I., K.B. Haraldsen, A. Ergon & A.B. Eriksen, 1999. Copper resistance and genetic diversity in Lychnis alpina (Ca-ryophyllaceae) populations on mining sites. Folia Geobot. 34: 471–481.

    Article  Google Scholar 

  • Powles, S.B., D.F. Lorraine-Colwill, J.J. Dellow & C. Preston, 1998. Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci. 46: 604–607.

    CAS  Google Scholar 

  • Pyšek, P., 1998. Alien and native species in Central European urban floras: a quantitative comparison. J. Biogeography 25: 155–163.

    Article  Google Scholar 

  • Rejmánek, M., 2000. Invasive plants: approaches and predictions. Austral Ecol. 25: 497–506.

    Article  Google Scholar 

  • Reznick, D.N. & C.K. Ghalambor, 2001. The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112-113: 183–198.

    Article  CAS  PubMed  Google Scholar 

  • Reznick, D.N., F.H. Shaw, F.H. Rodd & R.G. Shaw, 1997. Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275: 1934–1937.

    Article  CAS  PubMed  Google Scholar 

  • Sauer, J.D., 1988. Plant Migration: The Dynamics of Geographic Patterning in Seed Plant Species. University of California Press, Berkeley.

    Google Scholar 

  • Shaw, J., J. Antonovics & L.E. Anderson, 1987. Inter-and intra specific variation of mosses in tolerance to copper and zinc. Evolution 41: 1312–1325.

    Article  CAS  Google Scholar 

  • Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford.

    Google Scholar 

  • Snaydon, R.W., 1970. Rapid population differentiation in a mosaic environment. I: the response of Anthoxanthum odoratum to soils. Evolution 24: 257–269.

    Article  Google Scholar 

  • Smith, S.D., T.E. Huxman, S.F. Zitzer, T.N. Charlet, D.C. Housman, J.S. Coleman, L.K. Fenstermaker, J.R. Seemann & R.S. Nowak, 2000. Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408: 79–82.

    Article  CAS  PubMed  Google Scholar 

  • Snaydon, R.W. & M.S. Davies, 1972. Rapid population differentiation in a mosaic environment. II: morphological variation in Anthoxanthum odoratum. Evolution 26: 390–405.

    Article  Google Scholar 

  • Snaydon, R.W. & M.W. Davies, 1982. Rapid divergence of plant populations in response to recent changes in soil conditions. Evolution 36: 289–297.

    Article  Google Scholar 

  • Stearns, S.C., 1992. The Evolution of Life Histories. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Thomas, S.C. & M. Jasieński, 1996. Genetic variability and the nature of microevolutionary responses to elevated CO2, pp. 51–81 in Carbon Dioxide, Populations, and Communities, edited by C. Körner & F.A. Bazzaz. Academic Press, San Diego, CA.

    Chapter  Google Scholar 

  • Ward, J.K., J. Antonovics, R.B. Thomas & B.R. Strain, 2000. Is atmospheric CO2 a selective agent on model C3 annuals? Oecologia 123: 330–341.

    Article  Google Scholar 

  • Warwick, S.I. & E. Small, 1999. Invasive plant species: evolutionary risk from transgenic crops, pp. 235–256 in Plant Evolution in Man-made Habitats, edited by L.W.D. van Raamsdonk & J.C.M. den Nijs. Hugo de Vries Laboratory, Amsterdam, The Netherlands.

    Google Scholar 

  • Whitfield, C.P., A.W. Davison & T.W. Ashenden, 1997. Artificial selection and heritability of ozone resistance in two populations of Plantago major. New Phytol. 137: 645–655.

    Article  CAS  Google Scholar 

  • Williamson, M. & A. Fitter, 1996. The varying success of invaders. Ecology 77: 1666–1670.

    Article  Google Scholar 

  • Willis, A.J., J. Memmott & R.I. Forrester, 2000. Is there evidence for the post-invasion evolution of increased size among invasive plant species? Ecol. Lett. 3: 275–283.

    Article  Google Scholar 

  • Wu, L. & J. Antonovics, 1976. Experimental genetics of Plantago. II: lead tolerance in P. lanceolata and Cynodon dactylon from a roadside. Ecology 37: 205–208.

    Article  Google Scholar 

  • Wu, L., A.D. Bradshaw & D.A. Thurman, 1975. The potential for evolution of heavy metal tolerance in plants. III: the rapid evolution of copper tolerance in Agrostis stolonifera. Heredity 34: 165–187.

    Article  Google Scholar 

  • Wu, L. & A.L. Kruckeberg, 1985. Copper tolerance in two legume species from a copper mine habitat. New Phytol. 99: 565–570.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. P. Hendry M. T. Kinnison

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bone, E., Farres, A. (2001). Trends and rates of microevolution in plants. In: Hendry, A.P., Kinnison, M.T. (eds) Microevolution Rate, Pattern, Process. Contemporary Issues in Genetics and Evolution, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0585-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0585-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3889-8

  • Online ISBN: 978-94-010-0585-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics