Skip to main content

The solar interior

  • Chapter
The Century of Space Science

Abstract

The quest to learn the internal structure and dynamics of the Sun is motivated by several issues. For most people the most obvious is the desire to understand the source of energy for the Earth, which is essential for the maintenance of life. Astronomers are interested in the Sun because it is an example of a typical main-sequence star that can be studied in enormously greater detail than any other. And in addition, the Sun can be used to investigate fundamental physics: it is an important source of gravity, providing a testbed for the general theory of relativity, and it contains material at high pressure and temperature permitting us to study particle, nuclear and atomic physics, plasma physics, and fluid dynamics under conditions that cannot be achieved on Earth. Perhaps less fundamental but certainly more important to society, the solar interior is the source of both secular and cyclic variability in the electromagnetic and particle fluxes, and of all their effects on the Earth and human technological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Further Reading

  1. Proceedings of the Symposium on the Study of the Solar Cycle from Space, Wellesley, MA, June 1979, NASA Conference Publication CP-2098, 1979.

    Google Scholar 

  2. Hill, H. and Dziembowski, W. (eds) (1980), Nonradial and Nonlinear Stellar Pulsation, Proceedings of a workshop held in Tucson, Arizona, 12–16 March 1979, Lecture Notes in Physics 125,Springer-Verlag, Berlin.

    Google Scholar 

  3. S. Sofia (ed), Variations of the Solar Constant, Proceedings of a workshop held at Goddard Space Flight Center, 5–7 November 1980, NASA Conference Publication CP-2191, 1981.

    Google Scholar 

  4. Jordan, S. (ed) (1981). The Sun as a Star,Monograph Series on Nonthermal Phenomena in Stellar Atmospheres,NASA SP-450, Washington, DC.

    Google Scholar 

  5. Gough, D.O. (ed) (1983). Problems of Solar and Stellar Oscillations, Proceedings of the 66th IAU Colloquium held at the Crimean Astrophysical Observatory, USSR, 1–5 September 1981,Reidel, Dordrecht [also Solar Physics, 82].

    Google Scholar 

  6. Belvedere, G. and Paterno, L. (eds) (1984). Oscillations as a Probe of the Sun’s Interior, EPS Study Conference held in Catania,Italy, 20–24 June 1983, Memorie della Societa’ Astronomica Italiana,55, Nos. 1–2.

    Google Scholar 

  7. Ulrich, R.K., Harvey, J., Rhodes, E.J., Jr. and Toomre, J. (eds) (1984). Solar Seismology from Space, NASA JPL 84–84, Pasadena, CA.

    Google Scholar 

  8. Future Missions in Solar, Heliospheric and Space Plasma Physics, Proceedings of an ESA Workshop, Garmisch-Partenkirschen, Germany, 30 April-3 May 1985 (ESA SP-235), 1985.

    Google Scholar 

  9. Gough, D.O. (ed) (1986). Seismology of the Sun and the Distant Stars, NATO conference, Reidel, Dordrecht.

    Google Scholar 

  10. Rolfe, E.J. (ed) (1988). Seismology of the Sun and Sun-Like Stars, ESA SP-286, Paris.

    Google Scholar 

  11. Christensen-Dalsgaard, J. and Frandsen, S. (eds) (1988).Advances in Helio-and Asteroseismology, IAU Symposium 123, Reidel,Dordrecht.

    Google Scholar 

  12. Berthomieu, G. and Cribier, M. (eds) (1990). Inside the Sun, Proceedings of the 121st Colloquium of the IAU, held at Versailles, France, 22–26 May 1989, Kluwer, Dordrecht.

    Google Scholar 

  13. Gough, D.O. and Toomre, J. (eds) (1991).Challenges to Theories of Moderate Mass Stars, Proceedings of a conference held in Santa Barbara, CA, 19–22 June 1990, Lecture Notes in Physics 388, Springer-Verlag, Berlin.

    Google Scholar 

  14. Cox, A.N., Livingston, W.C. and Matthews, M.S. (eds) (1991).Solar Interior and Atmosphere, Conference Proceedings, Tucson, AZ,15–18 November 1988, University of Arizona Press, Tucson, AZ.

    Google Scholar 

  15. Brown, T. (ed) (1993). GONG 1992: Seismic Investigations of the Sun and Stars, ASP Conference Series Vol. 42, Astronomical Society of the Pacific, San Francisco.

    Google Scholar 

  16. Ulrich, R.K., Rhodes, E.J., Jr. and Däppen, W. (eds) (1995).GONG ’94: Helio-and Astero-Seismology from the Earth and Space,ASP Conference Series Vol. 76, Astronomical Society of the Pacific,San Francisco.

    Google Scholar 

  17. Hoeksema, J.T., Domingo, V, Fleck, B. and Battrick,B. (eds) (1995). Fourth SOHO Workshop, Helioseismology, held at Pacific Grove, CA, 2–6 April 1995, ESA SP-376, 2 vols.

    Google Scholar 

  18. Fleck, B., Domingo, V. and Poland, A. (eds) (1995). The SOHO Mission, Kluwer, Dordrecht [also Solar Physics, 162(1–2)].

    Google Scholar 

  19. Provost, J. and Schmider, F.-X. (eds) (1998). Sounding Solar and Stellar Interiors, Proceedings of IAU Symposium 181, Nice, France, 30 September-3 October 1996, Kluwer, Dordrecht.

    Google Scholar 

  20. Fleck, B. and Svestka, Z. (eds) (1997). The First results from SOHO, Kluwer, Dordrecht [also Solar Physics, 170(1) and 175(2)].

    Google Scholar 

  21. Deubner, F.-L., Christensen-Dalsgaard, J. and Kurtz, D. (eds) (1997). IAU Symposium 185: New Eyes to See Inside the Sun and Stars, Proceedings from Symposium held in Kyoto, Japan, 18–22 August 1997, Kluwer, Dordrecht.

    Google Scholar 

  22. Structure and Dynamics of the Interior of the Sun and Sun-like Stars, SOHO 6/GONG 98 Workshop, 1–4 June 1998, Boston, USA, ESA SP-418 (2 volumes).

    Google Scholar 

  23. Duvall, T.L., Jr., Harvey, J.W., Kosovichev, A.G. and Svestka, Z. (eds) (2000). Helioseismic Diagnostics of Solar Convection and Activity, SOHO 9 Workshop held 12–15 July 1999 at Stanford, CA, Kluwer, Dordrecht [also Solar Physics, 192(1–2) and 193(1–2)].

    Google Scholar 

  24. Brekke, P., Fleck B. and Gurman J.B. (eds) (2001). Recent Insights into the Physics of the Sun and Heliosphere: Highlights from SOHO and other Space Missions, Proceedings of IAU Symposium No. 203, Astronomical Society of the Pacific.

    Google Scholar 

  25. Wilson, A. and Palle, P. (eds) (2001). Helio-and Astero-seismology at the Dawn of the Millennium, SOHO 10/GONG 2000 Workshop, 2–6 October 2000, Santa Cruz de Tenerife, Tenerife, Spain, ESA SP-464, The Netherlands.

    Google Scholar 

References

  • Ahmad, Q.R. et al. (2001). Measurement of the rate of v e + d →p + p + e-interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory. Physical Review Letters, 87, 071301.

    Article  ADS  Google Scholar 

  • Antia, H.M., Basu, S., Hill, F., Howe, R., Komm, R.W. and Schou, J. (2001). Studying asphericity in the solar sound speed from MDI and GONG data. In TENERIFE 2000, pp. 45–50.

    Google Scholar 

  • Appourchaux, T., Fröhlich, C., Andersen, B., Berthomieu, G., Chaplin, W., Elsworth, Y., Finsterle, W., Gough, D.O., Hoeksema, J.T., Isaak, G.R., Kosovichev, A.G., Provost, J., Scherrer, P.H., Sekii, T. and Toutain, T. (2000). Observational upper limits to low-degree solar g modes. Astrophysical Journal, 538, 401–414.

    Article  ADS  Google Scholar 

  • Babcock, H.W. (1961). The topology of the Sun’s magnetic field and the 22-year cycle. Astrophysical Journal, 133, 572–587.

    Article  ADS  Google Scholar 

  • Bahcall, J.N. (1989). Neutrino Astrophysics, Cambridge University Press.

    Google Scholar 

  • Bahcall, J.N. and Loeb, A. (1990). Element diffusion in stellar interiors. Astrophysical Journal, 360, 267–274.

    Article  ADS  Google Scholar 

  • Basu, S. and Antia, H.M (1997). Seismic measurement of the depth of the solar convection zone. Monthly Notices of the Royal Astronomical Society, 287, 189–198.

    ADS  Google Scholar 

  • Basu, S. and Antia, H.M. (2000). Possible solar cycle variations in the convection zone. In STANFORD 2000, pp. 449–458.

    Google Scholar 

  • Basu, S. and Antia, H.M. (2001). A study of temporal variations of the tachocline. In TENERIFE 2000, pp. 297–300.

    Google Scholar 

  • Baturin, V.A., Däppen, W., Gough, D.O. and Vorontsov, S.V. (2000). Seismology of the solar envelope: Sound-speed gradient in the convection zone and its diagnosis of the equation of state. Monthly Notices of the Royal Astronomical Society, 316, 71–83.

    Article  ADS  Google Scholar 

  • Beck, J.G. and Duvall, T.L., Jr. (2001). Time-distance study of supergranulation. In TENERIFE 2000, pp. 577–581.

    Google Scholar 

  • Beck, J.G., Duvall, T.L., Jr., Scherrer, P.H. and Hoeksema, J.T. (1998). The detection of giant velocity cells on the Sun. In BOSTON 1998, pp. 725–729.

    Google Scholar 

  • Beck, J.G. and Schou, J. (2000). Supergranulation rotation. In STANFORD 2000, pp. 529–539.

    Google Scholar 

  • Bedding, T.R., Butler, R.P., Kjeldsen, H., Baldry, I.K., O’Toole, S.J., Tinney, C.G., Marcy, G.W., Kienzle, F. and Carrier, F. (2001). Evidence for solarlike oscillaions in β Hydri. Astrophysical Journal, 549, L105–L108.

    Article  ADS  Google Scholar 

  • Birch, A.C. and Kosovichev, A.G. (1998). Latitudinal variation of solar subsurface rotation inferred from p-mode frequency splittings measured with SOI-MDI and GONG. Astrophysical Journal, 503, L187.

    Article  ADS  Google Scholar 

  • Bonnet, R., Crommelynck, D., Delaboudiniere, J., Fröhlich, C., Simon, P. and Thuillier, G. (1981). Disco Assessment Study, European Space Agency Report ESA SCI(81), 3 May 1981.

    Google Scholar 

  • Bonnet, R., Crommelynck, D., Delaboudiniere, J., Fröhlich, C., Simon, P. and Thuillier, G. (1991). Disco Re-Assessment Study European Space Agency Report ESA SCI(81), 6, September 1991.

    Google Scholar 

  • Braun, D.C., Duvall, T.L. and LaBonte, B.J. (1987). Acoustic absorption by sunspots. Astrophysical Journal, 319, L27–L31.

    Article  ADS  Google Scholar 

  • Braun, D.C., Lindsey, C., Fan, Y., and Fagan, M. (1998). Seismic holography of solar activity. Astrophysical Journal, 502, 968.

    Article  ADS  Google Scholar 

  • Brown, T.M. (1985). Solar rotation as a function of depth and latitude. Nature, 317, 591–594.

    Article  ADS  Google Scholar 

  • Brown, T.M., Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P.R., Gough, D.O. and Morrow, C.A. (1989). Inferring the Sun’s internal angular velocity from observed p-mode frequency splittings. Astrophysical Journal, 343, 526–546.

    Article  ADS  Google Scholar 

  • Brown, T.M. (1998). Observational challenges in asteroseismology. In R. Donahue and J. Bookbinder (eds), Cool Stars, Stellar Systems and the Sun, Tenth Cambridge Workshop, ASP Conference Series Vol. 154, Astronomical Society of the Pacific, San Francisco, pp. 289–300.

    Google Scholar 

  • Brown, T.M. and Christensen-Dalsgaard, J. (1998). Accurate determination of the solar photospheric radius. Astrophysical Journal Letters, 500, L195–L198.

    Article  ADS  Google Scholar 

  • Brummell, N.H., Hurlburt, N.E., Toomre, J. (1998). Turbulent compressible convection with rotation. II. Mean flows and differential rotation. Astrophysical Journal, 493, 955–969.

    Article  ADS  Google Scholar 

  • Catala, C., Mangeney, A., Gautier, D., Auvergne, M., Baglin, A., Goupil, M.J., Michel, E., Zahn, J.P., Magnan, A., Vuillemin, A., Boumier, P., Gabriel, A., Lemaire, P., Turck-Chieze, S., Dzitko, H., Mosser, B. and Bonneau, F. (1995). COROT: A proposal to study stellar convection and internal rotation. In GONG 1994, pp. 426–431.

    Google Scholar 

  • Chaplin, W.J., Elsworth, Y., Howe, R., Isaak, G.R., McLeod, C.P., Miller, B.A., van der Raay, H.B., Wheeler, S.J. and New, R. (1996). BiSON performance. Solar Physics, 168, 1–18.

    Article  ADS  Google Scholar 

  • Charbonneau, P., Christensen-Dalsgaard, J., Henning, R., Larsen, R.M., Schou, J., Thompson, M.J. and Tomczyk, S. (1999). Helioseismic constraints on the structure of the solar tachocline. Astrophysical Journal, 527, 445–460.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J. and Gough, D.O. (1976). Towards a heliological inverse problem. Nature, 259, 89–92.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Däppen, W., Ajukov, S.V., Anderson, E.R., Antia, H.M., Basu, S., Baturin, V.A., Berthomieu, G., Chaboyer, B., Chitre, S.M., Cox, A.N., Demarque, P., Donatowicz, J., Dziembowski, W.A., Gabriel, M., Gough, D.O., Guenther, D.B., Guzik, J.A., Harvey, J.W., Hill, F., Houdek, G., Iglesias, C.A., Kosovichev, A.G., Leibacher, J.W., Morel, P., Proffitt, C.R., Provost, J., Reiter, J., Rhodes, E.J., Jr., Rogers, F.J., Roxburgh, I.W., Thompson, M.J. and Ulrich, R.K. (1996). The current state of solar modeling. Science, 272, 1286–1292.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Duvall, T.L., Jr., Gough, D.O., Harvey, J.W. and Rhodes, E.J., Jr. (1985). Speed of sound in the solar interior. Nature, 315, 378–382.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Gough, D.O. and Thompson, M.J. (1991). The depth of the solar convection zone. Astrophysical Journal, 378, 413–437.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Proffitt, C.R., and Thompson, M.J. (1993). Effects of diffusion on solar models and their oscillation frequencies. Astrophysical Journal, 403, L75.

    Article  ADS  Google Scholar 

  • Claverie, A., Isaak, G.R., McLeod, C.P., van der Raay, H.B. and Roca Cortés, T.R. (1979). Solar structure from global studies of the 5-minute oscillation. Nature, 282, 591–594.

    Article  ADS  Google Scholar 

  • Deubner, F.L. (1975). Observations of low-wavenumber nonradial eigen-modes of the Sun. Astronomy and Astrophysics, 44, 371–375.

    ADS  Google Scholar 

  • Deubner, F.L. (1979). Five-minute oscillations on the Sun. Reports on Astronomy, Transactions of the IAU, 17A, Part 2, 53–56.

    Google Scholar 

  • Dicke, R.H. and Goldenberg, H.M. (1967). Solar oblateness and general relativity. Physical Review Letters, 18, 313–316.

    Article  ADS  Google Scholar 

  • Dicke, R.H. and Goldenberg. H.M. (1974). The oblateness of the Sun.Astrophysical Journal Supplement, 27, 131–182.

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B. and Poland, A. (1995). The SOHO mission: An overview. In SOHO 1995, pp. 1–37.

    Google Scholar 

  • Donea, A.-C., Lindsey, C. and Braun, D.C. (2000). Stochastic seismic emission from acoustic glories and the quiet Sun. In STANFORD 2000,pp. 321–333.

    Google Scholar 

  • Duvall, T.L. (1982). A dispersion law for solar oscillations. Nature, 300,242–243.

    Article  ADS  Google Scholar 

  • Duvall, T.L., Jr., Dziembowski, W.A., Goode, P.R., Gough, D.O.,Harvey, J.W. and Leibacher, J.W. (1984). Internal rotation of the sun.Nature, 310, 22–25.

    Article  ADS  Google Scholar 

  • Duvall, T. L. and Harvey, J.W. (1983). Observations of solar oscillations of low and intermediate degree. Nature, 302, 24–27.

    Article  ADS  Google Scholar 

  • Duvall, T.L. and Harvey, J.W. (1984). Rotational frequency splitting of solar oscillations. Nature, 310, 19–22.

    Article  ADS  Google Scholar 

  • Duvall, T.L., Jr., Harvey, J.W., Libbrecht, K.G., Popp, B.D. and Pomerantz, M.A. (1988). Frequencies of solar p-mode oscillations.Astrophysical Journal, 324, 1158–1171.

    Article  ADS  Google Scholar 

  • Duvall, T.L., Jr., Jefferies, S.M., Harvey, J.W., Osaki, Y. and Pomerantz, M.A. (1993a). Asymmetries of solar oscillation line profiles.Astrophysical Journal, 410, 829–836.

    Article  ADS  Google Scholar 

  • Duvall, T.L., Jefferies, S.M., Harvey, J.W. and Pomerantz, M.A. (1993b).Time-distance helioseismology. Nature, 362, 430–432.

    Article  ADS  Google Scholar 

  • Eddy, J.A. (1976). The Maunder minimum. Science, 192, 1189–1202.

    Article  ADS  Google Scholar 

  • Eddy, J.A. and Boornazian, A.A. (1979). Secular decrease in the solar diameter 1863–1953. Bulletin of the American Astronomical Society,11, 437.

    ADS  Google Scholar 

  • Elliott, J.R. and Kosovichev, A.G. (1998). Relativistic effects in the solar equation of state. In BOSTON 1998, pp. 453–456.

    Google Scholar 

  • Elsworth, Y., Howe, R., Isaak, G.R., McLeod, C.P. and New, R. (1990).Variation of low-order acoustic solar oscillations over the solar cycle.Nature, 345, 322–324.

    Article  ADS  Google Scholar 

  • Emilio, M., Leister, N.V. and Laclare, F. (1998). Solar diameter latitude dependence. In BOSTON 1998, pp. 457–460.

    Google Scholar 

  • Favata, F., Roxburgh, I.W. and Christensen-Dalsgaard, J. (2000).Eddington: A mission to map stellar evolution through oscillations and to find habitable planets. ESA-SCI (2000) 8, ESTEC, Noordwijk.

    Google Scholar 

  • Fossat, E. (1995) IRIS status report. In GONG 1994, pp. 387–391.

    Google Scholar 

  • Fossat, E. and Roddier, F. (1971). A sodium experiment for photospheric velocity field observations. Solar Physics, 18, 204–210.

    Article  ADS  Google Scholar 

  • Frazier, E.N. (1968). A spatio-temporal analysis of velocity fields in the solar photosphere. Zeitschrift für Astrophysik, 68, 345–356.

    ADS  Google Scholar 

  • Fröhlich, C. (1981). The variability of the solar output. In GSFC 1980.pp. 37–44.

    Google Scholar 

  • Fröhlich, C. (1984). Wavelength dependence of solar luminosity fluctuations in the five-minute range. In CATANIA 1983, pp. 237–243.

    Google Scholar 

  • Fröhlich, C., Romero, J., Roth, H., Wehrli, C., Andersen, B.,Appourchaux, T., Domingo, V., Teiljohann, U., Berthomieu, G.,Delache, P., Provost, J., Toutain, T., Crommelynck, D., Chevalier, A.,Fichot, A., Däppen, W., Gough, D., Hoeksema, T., Jimenez, A.,Gomez, M., Herreros J., Roca Cortes, T., Jones, A., Pap, J. and Willson, R. (1995). VIRGO: Experiment for helioseismology and solar irradiance monitoring. In SOHO 1995, pp. 101–128.

    Google Scholar 

  • Fröhlich, C., Toutain, T., and Schrijver, C.J. (1991). Helioseismology with the IPHIR instrument on the USSR Phobos mission. Advances in Space Research, 11, 69–76.

    Article  ADS  Google Scholar 

  • Fukuda, S., Fukuda, Y., Ishitsuka, M., Itow, Y., Kajita, T., Kameda, J., Kaneyuki, K., Kobayashi, K., Koshio, Y., Miura, M., Moriyama, S., Nakahata, M., Nakayama, S., Obayashi, Y. and Okada, A. et al. (2000). Tau neutrinos favored over sterile neutrinos in atmospheric muon neutrino oscillations. Physical Review Letters, 85, 3999–4003.

    Article  ADS  Google Scholar 

  • Gabriel, A., Grec, G., Charra, J., Robillot, J-M., Roca-Cortes, T., Turck-Chieze, S., Bocchia, R., Boumier, P., Cantin, M., Cespedes, E., Cougrand, B., Cretolle, J., Dame, L., Decaudin, M., Delache, P., Denis, N., Duc, R., Dzitko, H., Fossat, E., Fourmond, H.-J., Garcia, R., Gough, D., Crivel, C., Herroros, J., Lagardere, H., Moalic, J.-P., Palle, P., Petrou, N., Sanchez, M., Ulrich, R. and Van der Raay, H. (1995). Global oscillations at low frequency from the SOHO mission (GOLF). In SOHO 1995, pp. 61–99.

    Google Scholar 

  • Gabriel, A.H., Charra, J., Grec, G., Robillot, J.-M., Cortes, T.R., Turck-Chieze, S., Ulrich, R., Basu, S., Baudin, F., Bertello, L., Boumier, P., Charra, M., Christensen-Dalsgaard, J., Decaudin, M., Dzitko, H., Foglizzo, T., Fossat, E., Garcia, R.A., Herreros, J.M., Lazrek, M., Palle, P.L., Petrou, N., Renaud, C. and Regulo, C. (1997). Performance and early results from the Golf Instrument flown on the Soho mission. In SOHO 1997, pp. 207–226.

    Google Scholar 

  • Giles, P. M., Duvall, T.L., Jr. and Scherrer, P.H. (1998). Time-distance measurements of subsurface rotation and meridional flow. In BOSTON 1998, pp. 775–780.

    Google Scholar 

  • Gilman, P.A. and Dikpati, M. (2000). Joint instability of latitudinal differential rotation and concentrated toroidal fields below the solar convection zone. II: Instability of narrow bands at all latitudes. Astrophysical Journal, 528, 552–572.

    Article  ADS  Google Scholar 

  • Gizon, L., Duvall, T.L., Jr. and Larsen, R.M. (2001). Probing surface flows and magnetic activity with time-distance helioseismology. In MANCHESTER 2000, pp.189–191.

    Google Scholar 

  • Goldreich, P., Murray, N. and Kumar, P. (1994). Excitation of solar p modes. Astrophysical Journal, 424, 466–479.

    Article  ADS  Google Scholar 

  • González Hernández, I., Patrón, J., Bogart, R.S. and the SOI Ring Diagram Team (1998). Meridional flows from ring diagram analysis. In BOSTON 1998, pp. 781–786.

    Google Scholar 

  • Goode, P.R., Dziembowski, W.A., DiMauro, M.P., Kosovichev, A.G. and Schou, J. (1998). Solar asymmetries from SOHO-MDI splitting data. In BOSTON 1998, pp. 887–891.

    Google Scholar 

  • Gough, D.O. (1977). Random remarks on solar hydrodynamics. In R.M. Bonnet and P. Delache, (eds), The Energy Balance and Hydrodynamics of the Solar Chromosphere and Corona, Proceedings of IAU Colloquium No. 36, G. de Bussac, Clairmont-Ferrand, pp. 3–36.

    Google Scholar 

  • Gough, D.O. (1985a). Recent advances in helioseismology. In B. Chen and C. de Jager, (eds), Proc. Kunming Workshop on Solar Physics and Interplanetary Travelling Phenomena, Science Press, Beijing, vol. 1, pp. 137–164.

    Google Scholar 

  • Gough, D.O. (1985b). Theory of solar oscillations. In E. Rolfe and B. Battrick (eds), Future Missions in Solar, Heliospheric and Space Plasma Physics, ESA SP-235, ESTEC, Noordwijk, pp. 183–197.

    Google Scholar 

  • Gough, D.O. and Mclntyre, M.E. (1998). Inevitability of a magnetic field in the Sun’s interior. Nature, 394, 755–757.

    Article  ADS  Google Scholar 

  • Gough, D.O. and Thompson, M.J. (1991). The inversion problem. In A.N. Cox, W.C. Livingston and M.S. Matthews (eds), Solar Interior and Atmosphere, University of Arizona Press, Tucson, AZ, pp. 519–561.

    Google Scholar 

  • Gough, D.O. and Kosovichev, A.G. (1995). An attempt to measure the latitudinal variation of the depth of the convection zone. In ASILOMAR 1995, pp. 47–48.

    Google Scholar 

  • Harvey, J.W. (1988). Solar internal rotation from helioseismology. In TENERIFE 1988, pp. 55–66.

    Google Scholar 

  • Hathaway, D.H., Beck, J.G., Bogart, R.S., Bachmann, K.T., Khatri, G., Petitto, J.M., Han, S. and Raymond, J. (2000). The photospheric convection spectrum. In STANFORD 2000, pp. 495–508.

    Google Scholar 

  • Hill, F. (1989). Solar oscillation ring diagrams and large-scale flows. Astrophysical Journal, 343, L69–L71.

    Article  ADS  Google Scholar 

  • Hill, F., Deubner, F-L. and Isaak, G. (1991). Oscillation observations. In COX 1991, pp. 329–400.

    Google Scholar 

  • Hill, H.A. and Caudell, T.P. (1979). Global oscillations of the Sun: Observed as oscillations in the apparent solar limb-darkening function. Monthly Notices of the Royal Astronomical Society, 186, 327–342.

    ADS  Google Scholar 

  • Hill, H.A. and Stebbins, R.T. (1975). The intrinsic visual oblateness of the Sun. Astrophysical Journal, 200, 471–483.

    Article  ADS  Google Scholar 

  • Houdek, G., Chaplin, W.J., Christensen-Dalsgaard, J., Däppen, W., Elsworth, Y., Gough, D.O., Isaak, G.R., McLeod, C.P., New, R. and Rabello-Soares, M.C. (2001). On changes in convective properties over the solar cycle. Monthly Notices of the Royal Astronomical Society, 327, 483–487.

    Article  ADS  Google Scholar 

  • Howard, R. and Labonte, B.J. (1980). The sun is observed to be a torsional oscillator with a period of 11 years. Astrophysical Journal, 239, L33–L36.

    Article  ADS  Google Scholar 

  • Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R.W., Larsen, R.M., Schou, J., Thompson, M.J. and Toomre, J. (2000a). Dynamic variations at the base of the solar convection zone. Science, 287, 2456–2460.

    Article  ADS  Google Scholar 

  • Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R.W., Larsen, R.M., Schou, J., Thompson, M.J. and Toomre, J. (2000b). Deeply penetrating banded zonal flows in the solar convection zone. Astrophysical Journal, 533, L163–L166.

    Article  ADS  Google Scholar 

  • Hurlburt, N.E. and Rucklidge, A.M. (2000). Development of structure in pores and sunspots: flows around axisymmetric magnetic flux tubes. Monthly Notices of the Royal Astronomical Society, 314, 793–806.

    Article  ADS  Google Scholar 

  • Iglesias, C.A., Rogers, F.J. and Wilson, B.G. (1987). Reexamination of the metal contribution to astrophysical opacities. Astrophysical Journal, 322, L45–L48.

    Article  ADS  Google Scholar 

  • Isaak, G.R. (1961) An atomic beam spectrophotometer. Nature, 189, 373–374.

    Article  ADS  Google Scholar 

  • Kajita, T. (1999). Atmospheric neutrino results from Super-Kamiokande and Kamiokande -Evidence for vμ oscillations. Nuclear Physics B Proceedings Supplements, 77, 123–132.

    Article  ADS  Google Scholar 

  • Kjeldsen, H. and Bedding, T.R. (eds) (1998). The First MONS Workshop: Science with a Small Space Telescope, Aarhus Universitet, Aarhus.

    Google Scholar 

  • Kosovichev, A.G., Duvall, T.L., Jr., Birch, A.C., Gizon, L., Scherrer, P.H. and Zhao, J. (2001). Heliotomography of the outer layers of the Sun. In TENERIFE 2000, p. 701.

    Google Scholar 

  • Kosovichev, A.G., Nigam, R., Scherrer, P.H., Schou, J., Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P.H., Gough, D.O., Reiter, J. and Rhodes, E.J., Jr. (1997). Spherical and aspherical structure of the Sun: First year of SOHO-MDI observations. In KYOTO 1997, pp. 157–164.

    Google Scholar 

  • Kosovichev, A.G. and Schou, J. (1997). Detection of zonal shear flows beneath the Sun’s surface from f-mode frequency splitting. Astrophysical Journal, 482, L207.

    Article  ADS  Google Scholar 

  • Kosovichev, A.G., Schou, J., Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Aloise, J., Bacon, L., Burnette, A., DeForest, C., Giles, P.M., Leibrand, K., Nigam, R., Rubin, M., Scott, K., Williams, S.D., Basu, S., Christensen-Dalsgaard, J., Däppen, W., Rhodes, E.J., Jr., Duvall, T.L., Jr., Howe, R., Thompson, M.J., Gough, D.O. Sekii, T., Toomre, J., Tarbell, T.D., Title, A.M., Mathur, D., Morrison, M., Saba, J.L.R., Wolfson, C.J., Zayer, I. and Milford, P.N. (1996). Internal structure and rotation of the Sun: First results from MDI data. In NICE 1996, pp. 203–210.

    Google Scholar 

  • Kosovichev, A.G. and Zharkova, V.V. (1998). X-ray flare sparks quake inside Sun. Nature, 393, 317–318.

    Article  ADS  Google Scholar 

  • Kuhn, J.R., Armstrong, J.D., Bush, R.I. and Scherrer, P.H. (2000). Rossby waves on the Sun as revealed by solar ‘hills’. Nature, 405, 544–546.

    Article  ADS  Google Scholar 

  • Kuhn, J.R., Bush, R.I., Scheick, X. and Scherrer, P.H. (1998). The Sun’s shape and brightness. Nature, 392, 155.

    Article  ADS  Google Scholar 

  • Kumar, P. (1997). Excitation of solar acoustic oscillations. In J. Provost and F.-X. Schmider (eds), Sounding Solar and Stellar Interiors, IAU Symposium 181, Kluwer, Dordrecht, pp. 287–305.

    Chapter  Google Scholar 

  • Kumar, P. and Basu, S. (1999). Line asymmetry of solar p modes:Properties of acoustic sources. Astrophysical Journal, 519, 396–399.

    Article  ADS  Google Scholar 

  • Lazrek, M., Baudin, F., Bertello, L., Boumier, P., Charra, J., Fierry-Fraillon, D., Fossat, E., Gabriel, A.H., Garcia, R.A., Gelly, B., Gouiffes,C., Grec, G., Pallé, P.L., Pérez Hernández, F., Régulo, C., Renaud, C.,Robillot, J.M., Roca Cortés, T., Turck-Chièze, S. and Ulrich, R.K.(1997). First results on p modes from GOLF Experiment. In SOHO 1997, pp. 227–246.

    Google Scholar 

  • Ledoux, P. and Walraven, T. (1958). Variable stars. Handbuch der Physik,51, 353–604.

    ADS  Google Scholar 

  • Leibacher, J.W. and Stein, R.F. (1971). A new description of the solar five-minute oscillation. Astrophysical Letters, 7, 191–192.

    ADS  Google Scholar 

  • Leighton, R.B. (1961). Untitled comments on supergranulation and 5-min oscillations. In R.N. Thomas (ed), Aerodynamic Phenomena in Stellar Atmospheres, IAU Symposium 12, Il Nuovo Cimento Supplement Series 10, 22, 321–327.

    Article  Google Scholar 

  • Leighton, R.B. (1969). A magneto-kinematic model of the solar cycle.Astrophysical Journal, 156, 1–26.

    Article  ADS  Google Scholar 

  • Leighton, R.B., Noyes, R.W. and Simon, G.W. (1962). Velocity fields in the solar atmosphere. I. Preliminary report. Astrophysical Journal,135, 474.

    Article  ADS  Google Scholar 

  • Libbrecht, K.G. and Kaufman, J.M. (1988). Frequencies of high-degree solar oscillations. Astrophysical Journal, 324, 1172–1183.

    Article  ADS  Google Scholar 

  • Libbrecht, K.G., Woodard, M.F. and Kaufman, J.M. (1990). Frequencies of solar oscillations. Astrophysical Journal Supplement, 74, 1129–1149.

    Article  ADS  Google Scholar 

  • Lighthill, M.J. (1952). Proceedings of the Royal Society of London, A,211, 564–587.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lindsey, C. and Braun, D.C. (1990). Helioseismic imaging of sunspots at their antipodes. Solar Physics, 126, 101–115.

    Article  ADS  Google Scholar 

  • Lindsey, C. and Braun, D.C. (1999). Chromatic holography of the sunspot acoustic environment. Astrophysical Journal, 510, 494–504.

    Article  ADS  Google Scholar 

  • Lindsey, C. and Braun, D.C. (2000). Seismic images of the far side of the Sun. Science, 287, 1799–1801.

    Article  ADS  Google Scholar 

  • Livingston, W.C., Donnelly, R.F., Grigoryev, V., Demidov, M.L., Lean, J.,Steffen, M., White, O.R. and Willson, R.L. (1991). Sun-as-a-star spectrum variability. In COX 1991, pp. 1109–1160.

    Google Scholar 

  • Martic, M., Schmitt, J., Lebrun, J.-C., Barban, C., Connes, P., Bouchy, F.,Michel, E., Baglin, A., Appourchaux, T. and Bertaux, J.-L. (1999).Evidence for global pressure oscillations on Procyon. Astronomy and Astrophysics, 351, 993–1002.

    ADS  Google Scholar 

  • Matthews, J.M. (1998). Asteroseismology from space: Getting the MOST science for the least money. In BOSTON 1998, pp. 395–398.

    Google Scholar 

  • Morrow, C.A. (1988). Solar rotation models and the a1 a3 and a5 splitting coefficients for solar acoustic oscillations. In TENERIFE 1988, pp. 91–98.

    Google Scholar 

  • Newkirk, G., Jr. (1980). Chairman, Solar Cycle and Dynamics Mission,Final Report, July 1980, Goddard Space Flight Center, SCADM #3.

    Google Scholar 

  • Nigam, R., Kosovichev, A.G., Scherrer, P.H. and Schou, J. (1997). Line asymmetry and excitation mechanism of solar oscillations. In KYOTO 1997, pp. 195–198.

    Google Scholar 

  • Nigam, R., Kosovichev, A.G., Scherrer, P.H. and Schou, J. (1998).Asymmetry in velocity and intensity helioseismic spectra: A solution to a long-standing puzzle. Astrophysical Journal, 495, L115–L118.

    Article  ADS  Google Scholar 

  • Noyes, R.W. and Leighton, R.B. (1963). Velocity fields in the solar atmosphere. II. The oscillatory field. Astrophysical Journal, 138, 631–647.

    Article  ADS  Google Scholar 

  • Noyes, R.W., Rhodes, E.J., Jr. (1984) Probing the Depths of a Star: The Study of Solar Oscillations from Space. Report of the NASA Science Working Group on the Study of Solar Oscillations from Space, July 1984, NASA JPL, Pasadena, CA.

    Google Scholar 

  • Parker, E.N. (1979). Sunspots and the physics of magnetic flux tubes. I. The general nature of the sunspot. Astrophysical Journal, 230, 905–913.

    Article  ADS  Google Scholar 

  • Penny, A.J., Favata, F., Deeg, H.J., Eddington Science Team (2001). The Eddington planet-finding and asterseisomology mission. In Planetary Systems in the Universe, IAU Symposium 202, Manchester, England, August 2000. Astronomical Society of the Pacific, in press.

    Google Scholar 

  • Pontecorvo, B. (1968). Neutrino experiments and the problem of conservation of leptonic charge. Soviet Physics JETP, 26, 984–988.

    ADS  Google Scholar 

  • Quinn, T.J. and Fröhlich, C. (1999) Accurate radiometers should measure the output of the Sun. Nature, 401, 841–842.

    Article  ADS  Google Scholar 

  • Rabin, D.M., DeVore, C.R., Sheeley, N.R., Harvey, K.L. and Hoeksema, J.T. (1991). The solar activity cycle. In Cox 1991, pp. 781–843.

    Google Scholar 

  • Rhodes, E.J., Cacciani, A. and Korzennik, S.G. (1988). Initial high-degree p-mode frequency splittings from the 1988 Mt. Wilson 60-foot Tower Solar Oscillation Program. In TENERIFE 1988, pp. 81–86.

    Google Scholar 

  • Rhodes, E.J., Harvey, J.W. and Duvall, T.L. (1983). Recent observations of high-degree solar p-mode oscillations at the Kitt Peak National Observatory. In CRIMEA 1981, p. 111.

    Google Scholar 

  • Rhodes, E.J., Ulrich, R.K. and Simon, G.W. (1977). Observations of non-radial p-mode oscillations. Astrophysical Journal, 218, 901–919.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I. and the MDI Engineering Team (1995). The Solar Oscillations Investigation -Michelson Doppler Imager. In SOHO 1995, pp. 129–188.

    Google Scholar 

  • Scherrer, P.H., Wilcox, J.M., Christensen-Dalsgaard, J., Gough, D.O. (1983). Detection of solar five-minute oscillations of low degree. Solar Physics, 82, 75–87.

    Article  ADS  Google Scholar 

  • Schou, J. (1999). Migration of zonal flows detected using Michelson Doppler Imager f-mode frequency splittings. Astrophysical Journal, 523, L181–L184.

    Article  ADS  Google Scholar 

  • Schou, J., Antia, H.M., Basu, S., Bogart, R.S., Bush, R.I., Chitre, S.M., Christensen-Dalsgaard, J., DiMauro, M.P., Dziembowski, W.A., Eff-Darwich, A., Gough, D.O., Haber, D.A., Hoeksema, J.T., Howe, R., Korzennik, S.G., Kosovichev, A.G., Larsen, R.M., Pijpers, F.P., Scherrer, P.H., Sekii, T., Tarbell, T.D., Title, A.M., Thompson, M.J. and Toomre, J. (1998). Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophysical Journal, 505, 390–417.

    Article  ADS  Google Scholar 

  • Schou, J., Christensen-Dalsgaard, J., Howe, R., Larsen, R.M., Thompson, M.J. and Toomre, J. (1998). Slow poles and shearing flows from helioseismic observations with MDI and GONG spanning a year. In BOSTON 1998, pp. 845–849.

    Google Scholar 

  • Schou, J., Kosovichev, A.G., Goode, P.R. and Dziembowski, W.A. (1997). Determination of the Sun’s seismic radius from SOHO-MDI. Astrophysical Journal, 489, L197.

    Article  ADS  Google Scholar 

  • Simon, G.W. and Leighton, R.B. (1964). Velocity fields in the solar atmosphere. III. Large scale motions, the chromospheric network, and magnetic fields. Astrophysical Journal, 140, 1120–1147.

    Article  ADS  Google Scholar 

  • Smith, E.V.P. and Gottlieb, D.M. (1973). Solar flux and its variations. In W.R. Bandeen and S.P. Maran (eds), Possible Relationships between Solar Activity and Meteorological Phenomena, GSFC Symposium 74, Nov. 1973, NASA SP-366, Washington, DC, pp. 97–117.

    Google Scholar 

  • Sofia, S., Maier, E. and Twigg, L. (1991). The Solar Disk Sextant -Monitoring the size and shape of the Sun. Advances in Space Research, 11, 123–132.

    Article  ADS  Google Scholar 

  • Stein, R.F. and Nordlund, Å. (2000). Realistic solar convection simulations. Solar Physics, 192, 91–108.

    Article  ADS  Google Scholar 

  • Tobias, S.M., Brummeil, N.H., Clune, T.L. and Toomre, J. (2001). Transport and storage of magnetic field by overshooting turbulent compressible convection. Astrophysical Journal, 549, 1183–1203.

    Article  ADS  Google Scholar 

  • Tomczyk, S., Streander, K., Card, G., Elmore, D., Hull, H. and Cacciani, A. (1995). A instrument to observe low-degree solar oscillations. Solar Physics, 159, 1–21.

    Article  ADS  Google Scholar 

  • Turck-Chièze, S. Couvidat, S., Kosovichev, A.G., Gabriel, A.H., Berthomieu, G., Brun, A.S., Christensen-Dalsgaard, J., Garcia, R.A., Gough, D.O., Provost, J., Roca Cortés, T., Roxburgh, I.W. and Ulrich, R.K. (2001). Solar neutrino emission deduced from a seismic model. Astrophysical Journal Letters, 555, L69–L73.

    Article  ADS  Google Scholar 

  • Ulrich, R.K. (1970). The five-minute oscillations on the solar surface. Astrophysical Journal, 162, 993–1002.

    Article  ADS  Google Scholar 

  • Willson, R.C., Gulkis, S., Janssen, M., Hudson, H.S. and Chapman, G.A. (1981). Observations of solar irradiance variability. Science, 211, 700–702.

    Article  ADS  Google Scholar 

  • Woodard, M.F. and Hudson, H.S. (1983). Frequencies, amplitudes and linewidths of solar oscillations from total irradiance observations. Nature, 305, 589–593.

    Article  ADS  Google Scholar 

  • Woodard, M.F. and Libbrecht, K.G. (1988). On the measurement of solar rotation using high-degree p-mode oscillations. In TENERIFE 1988, pp. 67–71.

    Google Scholar 

  • Woodard, M.F. and Libbrecht, K.G. (1993). Solar activity and oscillation frequency splittings. Astrophysical Journal Letters, 402, L77–L80.

    Article  ADS  Google Scholar 

  • Zhao, J., Kosovichev, A.G. and Duvall, T.L., Jr. (2001). Investigation of mass flows beneath a sunspot by time-distance helioseismology. Astrophysical Journal, 557, 384–388.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gough, D.O., Scherrer, P.H. (2001). The solar interior. In: Bleeker, J.A.M., Geiss, J., Huber, M.C.E. (eds) The Century of Space Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0320-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0320-9_44

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7196-0

  • Online ISBN: 978-94-010-0320-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics