Skip to main content

Abstract

Bacterial cells, because of their relatively simple organization, have proved to be useful model systems for studying how the structure and function of cellular organelles are determined by the course of their biosynthesis. Although the sequence of the biochemical events leading to the assembly of cellular structural components determine to a large extent function and supramolecular structure, the physicochemical properties of the biopolymers themselves might also contribute to shape and function (1). Less is known about the in vivo physicochemical properties of biopolymers, than about their biosynthesis. An understanding of the three-dimensional structures and molecular dynamics of biopolymers is often required to bridge the gap between biochemical information on the one hand, and the structure of a cellular organelle, as revealed by electron microscopy, on the other. An example is the expression of the morphogenetically determined shapes of bacteria. The shape of a bacterial cell is maintained by the rigid peptidoglycan layer in its cell wall (2). It was once believed that correlations could be made between the shapes of bacteria and the chemical composition of the peptidoglycan layer (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H.J. Rogers (1974) Ann.N.Y.Acad.Sci. 235:29–51.

    Article  CAS  Google Scholar 

  2. W. Weidel and H. Pelzer (1964) Adv.Enzymol. 26:193–232.

    Google Scholar 

  3. H.J. Rogers, M. McConnell and R.C. Hughes (1971) Journal of General Microbiology 66:297–308.

    CAS  Google Scholar 

  4. U. Schwartz and W. Leutgeb (1971) J.Bacterid. 106:588–595.

    Google Scholar 

  5. J. Schaefer (1974) in: G.C. Levy (ed), Topics in Carbon-13 NMR Spectroscopy, John Wiley & Sons, New York, pp.150–208.

    Google Scholar 

  6. F. Heatley and A. Begum (1976) Polymer: 399–408.

    Google Scholar 

  7. J. Schaefer, E.O. Stejskal and R. Buchdahl (1977) Macromolecules 10:384–405.

    Article  CAS  Google Scholar 

  8. N.J.M. Birdsall, D.J. Ellar, A.G. Lee, J.C. Metcalfe and G.B. Warren (1975) Biochim.Biophys.Acta 380:344–354.

    CAS  Google Scholar 

  9. A. Daniels, R.J.P. Williams and P.E. Wright (1976) Nature 261:321–323.

    Article  CAS  Google Scholar 

  10. R.T. Eakin, L.O. Mórgan, C.T. Gregg and N.A. Matwiyoff (1972) FEBS Letters 28:259–264.

    Article  CAS  Google Scholar 

  11. D. Gust, R.B. Moon and J.D. Roberts (1975) Proc.Natl.Acad.Sci.USA 72:4696–4700.

    Article  CAS  Google Scholar 

  12. G.E. Hawkes, E.W. Randall and C.H. Bradley (1976) Nature 257:767–772.

    Article  Google Scholar 

  13. V. Markowski, T. Posner, P. Loftus and J.D. Roberts (1977) Proc.Natl.Acad.Sci.USA 94:1308–1309.

    Article  Google Scholar 

  14. M. Llinas and K.Würthrich, Biochim.Biophys.Acta, in press.

    Google Scholar 

  15. F. Blomberg, W. Maurer and H. Rüterjans (1976) Proc.Natl.Acad. Sci.USA 73:1409–1413.

    Article  CAS  Google Scholar 

  16. A. Lapidot, C.S. Irving and Z. Malik (1976) J.Am.Chem.Soc. 98:632–634.

    Article  CAS  Google Scholar 

  17. A. Lapidot and C.S. Irving (1977) J.Am.Chem.Soc. 99:5488–5490.

    Article  CAS  Google Scholar 

  18. C.S. Irving and A. Lapidot (1977) Biochim. Biophys.Acta 470:251–257.

    Article  CAS  Google Scholar 

  19. A. Lapidot and C.S. Irving (1977) in: M. Goodman & J. Meienhofer (eds), Peptides, Proc.Fifth Amer.Peptide Symp. John Wiley & Sons, New York, pp.419–422.

    Google Scholar 

  20. M. Llinas, K. wüthrich, W. Schworzer and W. von Philipshorn (1975) Nature 257:817–818.

    Article  CAS  Google Scholar 

  21. A. Lapidot and C.S. Irving (1977) Proc.Natl.Acad.Sci.USA 74:1988–1992.

    Article  CAS  Google Scholar 

  22. G.R. Millward and D.A. Raveley (1974) J.Ultrastructure Res. 46:309–326.

    Article  CAS  Google Scholar 

  23. R.E. Marquis (1968) J.Bacteriol. 95:776–781.

    Google Scholar 

  24. L.T. Ou and R.E. Marquis (1970) J.Bacteriol. 101:92–101.

    CAS  Google Scholar 

  25. L.T. Ou and R.E. Marquis (1972) Can.J.Microbiol. 18:623–629.

    Article  CAS  Google Scholar 

  26. J.M. Ghuysen and C.D. Shockman (1973) in: Loretta Leive (ed), Bacterial Membranes and Walls, Marcel Dekker, Inc., New York, Chp.2.

    Google Scholar 

  27. J.M. Ghuysen (1968) Bact.Rev. 32:425.

    CAS  Google Scholar 

  28. E.M. Oldmixon, S. Glauser and M.L. Higgins (1974) Biopolymers 13:2037–2060.

    Article  CAS  Google Scholar 

  29. J. Baddiley (1970) Accounts Chem.Res. 3:98–105.

    Article  CAS  Google Scholar 

  30. R.C. Hughes, J.G. Pavlik, H.J. Rogers and P.J. Tanner (1968) Nature 219:642–644.

    Article  CAS  Google Scholar 

  31. R. Scherrer and P. Gerhardt (1971) J.Bacteriol. 107:718–735.

    CAS  Google Scholar 

  32. R.E. Marquis, K. Mayzel and E.L. Carstensen (1976) Can.J.Microbiol. 22:975–982.

    Article  CAS  Google Scholar 

  33. M.J. Tilby (1977) Nature 266:450–452.

    Article  CAS  Google Scholar 

  34. N.H. Mendelson (1976) Proc.Natl.Acad.Sci.USA 44:1740–1744.

    Article  Google Scholar 

  35. H.J. Rogers (1967) Nature 213:31–33.

    Article  CAS  Google Scholar 

  36. J.M. Ghuysen (1972) Proc.Lysozyme Conf. pp. 185–193.

    Google Scholar 

  37. C.S. Irving and A. Lapidot (1975) J.Am.Chem.Soc. 97:5945–5946.

    Article  CAS  Google Scholar 

  38. J.F. Farnell, E.W. Randall and A.I. White (1972) J.Chem.Soc.,Chem. Commun. 1159–1160.

    Google Scholar 

  39. E. Work (1971) in: J.R. Norris & D.W. Ribbons (eds), Methods in Microbiology, Academic Press, pp.361–418.

    Google Scholar 

  40. H.J. Rogers and C.W. Forsberg (1971) J.Bacteriol. 108:1235–1243.

    CAS  Google Scholar 

  41. M.V. Kelemen and H.J. Rogers (1971) Proc.Natl.Acad.Sci.USA 68:992–996.

    Article  CAS  Google Scholar 

  42. R.C. Hughes and P.P. Thurman (1970) Biochem.J. 119:925–926.

    CAS  Google Scholar 

  43. J.T. Tipper (1970) International Journal of Systematic Bacteriology 20:361–377.

    Article  CAS  Google Scholar 

  44. H. Formanek, S. Formanek and H. Wawra (1974) Eur.J.Biochem. 46, 279–294.

    Article  CAS  Google Scholar 

  45. V. Braun, H. Gnirke, U. Henning and K. Renn (1973) J.Bacteriol. 114:1264–1270.

    CAS  Google Scholar 

  46. H.H.M. Balyuzi, D.A. Reaveley and R.E. Burge (1972) Nature New Biology 235, 252–253.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Lapidot, A., Irving, C.S. (1978). An in vivo 15N NMR Study of Bacterial Cell Walls. In: Pullman, B. (eds) Nuclear Magnetic Resonance Spectroscopy in Molecular Biology. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9882-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9882-7_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9884-1

  • Online ISBN: 978-94-009-9882-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics