Skip to main content

Changing Attitudes Toward Mathematical Rigor: Lagrange and Analysis in the Eighteenth and Nineteenth Centuries

  • Chapter
Epistemological and Social Problems of the Sciences in the Early Nineteenth Century

Abstract

To say “scientific developments have social and epistemological causes” is to state a generality to prove it requires an empirical base of specific examples. I wish to focus on one example from the history of mathematics: the foundations of the calculus between the late eighteenth and early nineteenth centuries. We will see, in some detail, the ways external factors can influence the choice of problems in mathematical research. And, because of the particular subject chosen - the foundations of the calculus - we will see the mechanisms by which external factors worked to increase the rigor of a branch of mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Poincaré, H.: in: Compte rendu du 2me Congrès internationale des mathématiciens. 1900, Paris 1902, pp. 120–122.

    Google Scholar 

  2. Grabiner, J.V.: The Origins of Cauchy’s Rigorous Calculus, forthcoming; compare Grabiner, J.V.: Cauchy and Bolzano. Tradition and Transformation in the History of Mathematics, in Mendelsohn, E. (ed.): Transformation and Tradition in the Sciences, forthcoming.

    Google Scholar 

  3. E. g. Newton, Euler, Maclaurin, l’Hospital, Lacroix, etc. See the bibliographies in: Boyer, C.: History of the Calculus, New York 1959, and in: Cajori, F.: History of the Conceptions of Limits and Fluxions in Great Britain from Newton to Woodhouse, Chicago and London 1919.

    Google Scholar 

  4. Especially the articles ‘Limité’ and ‘Différentiel’.

    Google Scholar 

  5. See Cajori (ref. 3).

    Google Scholar 

  6. Berkeley, G.: The Analyst, or a discourse addressed to an infidel mathematician (1734).

    Google Scholar 

  7. Limité’ and ‘Différentiel’; though he did not cite Berkeley, both the similarities in language and the coincidence of problems support this conclusion.

    Google Scholar 

  8. Carnot, L.N.M.: Réflêxions sur la métaphysique du calcul infinitesimal, Paris 1797.

    Google Scholar 

  9. Lagrange, J.-L.: Théorie des fonctions analytiques, Paris, 1797, preface, repr. in:-Oeuvres de Lagrange, vol. IX, pp. 16–20. Compare Lagrange, J.-L.: Discours sur l’object de la théorie des fonctions analytiques, in: J. Ecole poly. (1799); repr. in: Oeuvres de Lagrange, vol. VII, p. 325.

    Google Scholar 

  10. Struik, D.J.: Concise History of Mathematics, New York 1967, p. 137. Compare the assessment by J. Dieudonne that mathematics in 1797 had just entered “a period of stagnation”: Abrégé d’histoire des mathématiques, Paris 1978, p. 337.

    Google Scholar 

  11. Diderot, D.: De l’interprétation de la nature, Section IV, in: Verniere, P. (ed.): Oeuvres philosophiques de Didérot, Paris 1961, pp. 180–181.

    Google Scholar 

  12. Lagrange, letter to d’Alembert, 24 February 1772; in: Oeuvres de Lagrange, vol. XIII, p. 229.

    Google Scholar 

  13. Sur une nouvelle éspece du calcul rélatif à la differentiation et à l’intégration des quantités variables, in: Nouv. Mem. Beri. (1772), pp. 185–221; Oeuvres de Lagrange, vol. Ill, pp. 329–476.

    Google Scholar 

  14. Lacroix, S.-F.: Traité du calcul différentiel et intégral, Paris 1797, Ch. 1.

    Google Scholar 

  15. See, e. g., Struik, History (réf. 10); Ovâert, J.-L. et al.: Philosophie et calcul de l’infini, Paris 1976; and Mendelsohn, E.: The Emergence of Science as a Profession in: Hill, K. (ed.): The Management of Scientists, Boston 1964, pp. 3–48.

    Google Scholar 

  16. Lagrange, J.-L.: Theorie des fonctions analytiques (1797) (2d ed. 1813 ); Levons sur le calcul des fonctions (1799–1801); Cauchy, A.-L.: Cours d’analyse, Paris 1821; Résumé des leçons… sur le calcul infinitesimal, Paris 1823.

    Google Scholar 

  17. Arbogast, L.F.A.: Essai sur de nouveaux principes de calcul différentiel et intégral, indépendants de la théorie des infiniment–petits et celle des limites, Biblioteca Medicea-Laurenziana, Florence, MS Codex Ashburnham Appendix Sign. 1840. I thank the Laurentian Library for providing me a copy of this manuscript. Grattan-Guinness, I.: Development of the Foundations of Mathematical Analysis from Euler to Riemann (Cambridge, Mass., 1970), cites another manuscript version, p. 155 of his bibliography, which I have not seen: MS 2089, Ecole des ponts et chaussées, Paris. Arbogast’s manuscript “Essai” will be discussed below.

    Google Scholar 

  18. Carnot, op. cit.; l’Huilier, S.: Exposition élémentaire des principes des calculs supérieurs, Berlin 1787.

    Google Scholar 

  19. See Dickstein, S.: Zur Geschichte der Prinzipien der Infinitesimal-Rechnung. Die Kritiker der ‘théorie des fonctions analytiques’ von Lagrange, in: Abh. z. Geschichte der Math. 9 (1899) (= Z. fuer Math. u. Phys., Supplement to 44(1899)), pp. 65–79.

    Google Scholar 

  20. Grabiner, Cauchy and Bolzano, (réf. 2).

    Google Scholar 

  21. Dickstein, op. cit.

    Google Scholar 

  22. Grabiner, J. V.: The Origins of Cauchy’s Theory of the Derivative, in: Hist. Math. (1978), pp. 379–409. Compare Dugac, P. in: Histoire du theorème des accroissements finis, Paris 1979, which includes extensive citations from the primary sources with a connecting narrative.

    Google Scholar 

  23. The letter is reprinted in: Oeuvres de Lagrange, vol. XIV, p. 173.

    Google Scholar 

  24. As claimed by Jourdain, P.E.B.: The idea of the ‘Fonctions analytiques’ in Lagrange’s early work, in: Proc. Int. Cong. Math. II (1912), pp. 540–1; Jourdan’s reasons are: (1) Lagrange had introduced the prime-notation for the coefficients in the Taylor series in 1761, and (2) in 1772 Lagrange did define the derivative as the coefficient of h in the Taylor-series expansion for f(x-fh). However, (1) does not support Jourdain7s conclusion, since the “reform” in the 1761 paper is merely one of notation; for our explanation of (2), see our text.

    Google Scholar 

  25. Gerdil, H.S.: De l’infini absolu, in: Misc. Taur. (1760–61), pp. 1–45.

    Google Scholar 

  26. Lagrange, J.-L.: Note sur la métaphysique du calcul infinitésimal, in: Misc. Taur. (1760–61), pp. 17–18; repr. in: Oeuvres de Lagrange, vol. VII, pp. 597–9.

    Google Scholar 

  27. As Boyer seems to imply, op. cit., pp. 257–8, and as Carnot apparently believed, op. cit.

    Google Scholar 

  28. Lagrange, op. cit., p. 598.

    Google Scholar 

  29. FA, preface, p. 4, in: Oeuvres de Lagrange IX, p. 17.

    Google Scholar 

  30. Grabiner, J.V.: Is Mathematical Truth Time-Dependent?, in: Am. Math. Monthly 1974, pp. 354–365; see pp. 356–7.

    Google Scholar 

  31. Lagrange certainly was acquainted with some of Berkeley’s ideas, since he uses the concept and the term “compensation of errors.” There is no direct evidence about when, if ever, Lagrange read the Analyst itself; Lagrange did read English, as his citations of Landen and Maclaurin show. And Lagrange does use Berkeleyan arguments in his critique of older foundations; see FA, preface, in: Oeuvres de Lagrange, vol. IX, pp. 16–20.

    Google Scholar 

  32. In the preface to his FA; see: Oeuvres de Lagrange, vol. IX, p. 18.

    Google Scholar 

  33. Sur une nouvelle espece du calcul, in: Nouv. Mem. Berl.(1772), pp. 185–221; repr. in: Oeuvres de Lagrange, vol. III, pp. 439–476, p. 443. The notation here is confusing, since it is not the prime-notation for derivatives which he introduces later in the same paper; but it is his notation nevertheless.

    Google Scholar 

  34. Loc. cit.

    Google Scholar 

  35. The prize competition was set by the “Classe de mathématiques11 of the Academy, which in 1784 included Lagrange, Johann (II) Bernoulli, and Johann Karl Gottlieb Schulze. Lagrange was the leading light, and had long been concerned with this problem. That it was his idea is supported by Hofmann, J.E.: Geschichte der Mathematik, vol. I”, Berlin 1957, p. 68, and by Youschkevitch, A.P.: Lazare Carnot and the Competition of the Berlin Academy in 1787 on the Mathematical Theory of the Infinite, in which he drew on the manuscript collection of the Berlin Academy; the article is to be found in: Gillispie, C.C.: Lazare Carnot Savant, Princeton 1971, pp. 149–168; see p. 155.

    Google Scholar 

  36. Since the whole idea of “infinite magnitude” seemed to be inherently contradictory, the Academicians asked “that it can be explained how so many true theorems have been deduced” from such a problematic concept. See Hist. Acad. Royale, Berlin 1784, pp. 12–13.

    Google Scholar 

  37. Hist. Acad. Royale, Berlin 1786, p. 8.

    Google Scholar 

  38. Vivanti, G.: Infinitesimalrechnung, in: Cantor, M.: Vorlesungen ueber Geschichte der Mathematik, vol. IV, Leipzig 1908, p. 645, has claimed this; however, the time lag is simply too great.

    Google Scholar 

  39. As he said explicitly in the preface to the second edition of that work, the “Mechanique analytique” uses infinitesimals, but these can be given a rigorous basis by using the theory of analytic functions; Oeuvres de Lagrange, vol. XI, p. xiv.

    Google Scholar 

  40. FA (1797), preface, p. 5; Oeuvres de Lagrange, vol. IX, p. 19.

    Google Scholar 

  41. Loc. cit.

    Google Scholar 

  42. Quoted from the MS by Zimmermann, K.: Arbogast als Mathematiker und Historiker der Mathematik (Heidelberg, 1934), p. 45.

    Google Scholar 

  43. Arbogast: Calcul des derivations, Paris 1800, p. xiii, in his own account of this manuscript.

    Google Scholar 

  44. Loc. cit. Cp. Zimmermann, Arbogast (ref. 42 ), pp. 47–48.

    Google Scholar 

  45. Grabiner, Cauchy’s Theory of the Derivative, (ref. 22), p. 385.

    Google Scholar 

  46. See ref. 29.

    Google Scholar 

  47. Grabiner, Cauchy’s Theory of the Derivative (ref. 22), p. 384; see CF, 2d ed., in: Oeuvres de Lagrange, vol. X, p. 87; the notation is his, exept that I have substituted the more usual h for his i.

    Google Scholar 

  48. See ref. 2.

    Google Scholar 

  49. For Weierstrass, see Klein, F.: Entwicklung der Mathematik im 19ten Jahrhundert, vol. I, Berlin 1926, p. 283ff.; compare Dieudonne, Abrege d’histoire (ref. 10), pp. 370–3. For Dedekind, see his own introduction to: Continuity and Irrational Numbers [1872], New York 1963, p. 1. For Bolzano, see. e. g., his: Paradoxes of the Infinite; on Cantor, see first Dauben, J. W.: Georg Cantor, Cambridge (Mass.) 1979.

    Google Scholar 

  50. I owe this observation to the remarks at the Bielefeld conference of L. J. Daston and E. Mendelsohn. And, as I. Toth pointed out at the conference, within mathematics itself the development of non-Euclidean geometry provides an instructive example of the definition of a new - and autonomous - subdiscipline, and of the intercation between mathematics and philosophy.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 D. Reidel Publishing Company

About this chapter

Cite this chapter

Grabiner, J.V. (1981). Changing Attitudes Toward Mathematical Rigor: Lagrange and Analysis in the Eighteenth and Nineteenth Centuries. In: Jahnke, H.N., Otte, M. (eds) Epistemological and Social Problems of the Sciences in the Early Nineteenth Century. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8414-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8414-1_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8416-5

  • Online ISBN: 978-94-009-8414-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics