Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 74))

Abstract

Any physician interested in the field of clinical hemorheology may expect to encounter certain characteristic physical phenomena and their associated terminology. This chapter gives a brief survey of the biophysical terminology and definitions most often used in hemorheology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fung, Y. C. 1981. Biomechanics: Mechanical Properties of Living Tissues. Springer, New York.

    Google Scholar 

  2. Darby, R. 1976. Viscoelastic Fluids. Marcel-Dekker, Inc. New York.

    Google Scholar 

  3. Flugge, W. 1967. Viscoelasticity. Blaisdell Publishing Co. Waltham, Mass.

    Google Scholar 

  4. Copley, A.L. and King, R.G. 1984. A survey of surface hemorheologieal experiments on the inhibition of fibrinogenin formation employing surface layers of fibrinogen systems with heparin and other substances. A contribution on antithrombogenic action. Thrombosis Research, 35. 237–256.

    Google Scholar 

  5. Blank, M. 1983. Membrane proteins in monolayers, multilayers and membranes. Ann. N. Y. Acad. Sci. 416, 128–137.

    Article  PubMed  CAS  Google Scholar 

  6. Matrai, A., Warburton, B. and Dormandy, J. 1984. Surface rheological observations on human plasma. Biorheology, Suppl. I; 103–105.

    Google Scholar 

  7. Poiseuille, J.L.M. 1840. Recherches experimentales sur le mouvement des liquides dans les tubes de tres petits diametres. Compt. Rend. 11, 961–967.

    Google Scholar 

  8. Merrill, E.W., Gilliland, E.R., Cokelet, G.R., Shin, H. and Wells, R.E. 1963. Rheology of human blood near and at zero flow - effects of temperature and hematocrit level. Biophys. J. 3. 199–213.

    Google Scholar 

  9. Whittington R.B. and Harkness J. 1968. Viscosity - temperature variations in human blood and plasma. Biorheology 5, 252.

    Google Scholar 

  10. Hardy, R.C. 1966. NBS viscometer calibrating liquids and capillary tube viscometers. NBS monograph 55.

    Google Scholar 

  11. Krieger, I.M. and Maron, S.H. 1951. Direct determination of the flow curves on non-Newtonian fluids. J. Appl. Physics 23. 147–149.

    Google Scholar 

  12. Cerny, L.C., Cook, F.W. and Walker, C.C. 1962. Rheology of blood. Am. J. Physiol. 202, 1188–1194.

    Google Scholar 

  13. Benis, A.M. 1968. A new simple low-shear capillary viscometer for blood. Biorheology 5. 263–270.

    PubMed  CAS  Google Scholar 

  14. Walawender, W.P., Chen, T.Y. and Cala, D.F. 1975. An approximate Casson fluid model for tube flow of blood. Biorheol. 12, 111–119.

    CAS  Google Scholar 

  15. Matrai, A., Fendler, K. and Lissak, K. 1977. Sorozatmeresre alkalmas kapillaris mikroviszkozimeter. Kis. Orvostud. 29. 200–207.

    Google Scholar 

  16. Oka, S. 1960. The principles of rheometry. pp. 18–82. in Rheology Vol. III. Eirich, F.R. (ed.), Academic Press, New York.

    Google Scholar 

  17. Dinsdale, A. and Moore, F. 1962. Viscosity and its measurement. Chapman and Hall, London.

    Google Scholar 

  18. Jacobs, H.R. 1966. Meniscal Resistance in tube viscometry. Biorheol. 3. 117–140.

    CAS  Google Scholar 

  19. Mardles, E.W.J. 1969. The flow of liquids through fine capillaries and narrow channels: the meniscus resistance ( Jamin-effect ). Biorheol. 6. 1–10.

    Google Scholar 

  20. Harkness, J. 1963. A new instrument for the measurement of plasma viscosity. Lancet 2, 280–284.

    Article  PubMed  CAS  Google Scholar 

  21. Eastham, R.D. and Morgan, M. H. 1965. Plasma viscosity in clinical laboratory practice. J. Med. Lab. Tech. 22. 70–73.

    Google Scholar 

  22. Harris, G.J. 1972. Plasma viscometry and ESR in the elderly. Med. Lab. Technol. 29. 405–410.

    Google Scholar 

  23. Matrai, A., E. Ernst, P.T. Flute and J.A. Dormandy. 1984. Blood filterability in peripheral vascular disease - red cell deformability or cell sticking? Clin. Hemorheol. 4, 311–325.

    Google Scholar 

  24. Ernst, E., Matrai, A. Scherer, A. Schmidlechner, Ch. and Monshausen, Ch. 1985. Methodological and intra-individual variations in Theologically relevant blood tests. Clin. Hemorheol. 5, 511–514.

    Google Scholar 

  25. Matrai, A. and Ernst, E. 1985. Measurement of plasma viscosity - Comparison of four viscometers. Pediatric Research Societies in Europe, 2nd Joint Meeting, Munich, October 14–17.

    Google Scholar 

  26. Wintrobe M.M. 1981. (ed.) Clinical Hematology. Lea and Fibiger, Philadelphia.

    Google Scholar 

  27. Chmiel H, Anadere I, Walitza E, Witte S. 1983. The measurement of density and its significance in blood rheology. Biorheology 20, 685–696.

    PubMed  CAS  Google Scholar 

  28. Copley, A.L. and King, R.G. 1971. Rheogoniometric study of viscosity of surface layers of fibrinogen and plasma-fibrinogen systems. Federation Proc., 30. 489–494.

    Google Scholar 

  29. McMillan, D.E. 1974. Surface effects of proteins in cone-plate viscometry. Biorheol. 11. 149–150.

    CAS  Google Scholar 

  30. King, R.G. and Copley, A.L. 1970. Modifications to the Weissenberg rheogoniometer for hemorheological and other biorheological studies. Biorheology 7. 1–4.

    PubMed  CAS  Google Scholar 

  31. King, R.G., Chien, S., Usami, S. and Copley, A.L. 1984. Biorheological methods employing the Weissenberg rheogoniometer. Biorheology, Suppl. I; 23–34.

    Google Scholar 

  32. Wells, R.E., Denton, R. and Merrill, E.W. 1961. Measurement of viscosity of biological fluids by cone plate viscometer. J. Lab. Clin. Med. 57, 646–656.

    Google Scholar 

  33. Wells, R., Schmid-Schönbein, H. and Goldstone, J. 1971. Flow behavior of red cells in pathologic sera: existence of a yield shear stress in the absence of fibrinogen, pp. 360–365. in: Theoretical and Clinical Hemorheology, Hartert H.H. and Copley, A.L. (eds.), Springer, Berlin.

    Google Scholar 

  34. Dormandy, J.A. 1974. Medical and engineering problems of blood viscosity. Biomedical Engineering, 9. 284–289.

    PubMed  CAS  Google Scholar 

  35. Ehrly, A.M. and Jung, G. 1973. Circadian rhythm of human blood viscosity. Biorheology 10, 577–583.

    PubMed  CAS  Google Scholar 

  36. Dormandy, J.A. (Chien, S.) 1980. Blood viscosity and red cell deformability. pp. 214-266 in “Methods in Angiology”, M. Verstraete (ed.), Instrumentation and Techniques in Clinical Medicine, Vol. 2. Martinus Nijhoff, Amsterdam.

    Google Scholar 

  37. Inglis, T.C.M., Carson, P.J. and Stuart, J. 1981. Clinical measurement of whole-blood viscosity at low shear rates. Clin. Hemorheol. 1. 167–177.

    Google Scholar 

  38. Ernst, E. and Matrai, A. 1982. Rotationsviskometer in der Hämorheologie. Arztl. Lab. 28. 33–38.

    Google Scholar 

  39. Spinelli, F.R. and Meier, Ch.D. 1974. Measurement of blood viscosity. Biorheol. 11. 301–306.

    CAS  Google Scholar 

  40. Gilinson, P.J., Dauwalter, C.R. and Merrill, E.W. 1963. A rotational viscometer using an A.C. torque to balance loop and air bearing. Trans. Soc. Rheol. 7. 319–331.

    Article  Google Scholar 

  41. Matrai, A., Flute, P.T. and Dormandy, J.A. 1984. Improving accuracy of co-axial viscometry. Biorheology, Suppl. I; 99–101.

    Google Scholar 

  42. Brooks, D.E. and Easthope, P. 1981. Rheological Characteristics of blood through the menstrual cycle. Biorheology 18, 485–492.

    PubMed  CAS  Google Scholar 

  43. Ernst, E. 1982. Zur mess technischen Erfassung der Blutviskositaet. Labor Praxis in der Medizin, 2, 18–23.

    Google Scholar 

  44. Adjizian, J.C., Droulle, C., Osterman, G., Pignon, B. and Potron, G. 1984. Comparative interest of two coaxial viscometers: Ecktacytometer and Low-shear 30. Biorheology, Suppl.I; 95–97.

    Google Scholar 

  45. Whittington, R.B., Matrai, A. and Nicol, C.G. 1984. Characteristic parameters derived from whole-blood viscosimetry: their potential utility in diagnosis and therapy. Clin. Hemorheol. 4, 285–293.

    Google Scholar 

  46. Forconi, S., Guerrini, M., Pieragalli, D., Acciavatti, A. 1981. Viscosimetria ematica: approccio metodologico. La Ricerca Clin. Lab. 11. (suppl. 11). 135–144.

    Google Scholar 

  47. Ernst, E., Magyarosy, I., Roloff, Ch. and Drexel, H. 1984. A new simple method for measuring red cell aggregation. Biorheology, Suppl. I; 217–219.

    Google Scholar 

  48. Kiesewetter, H. 1981. The yield shear stress of blood in branched models of the microcirculation: Effect of hematocrit and plasma macro-molecules. Bibl.Haematol. 47. 14–20.

    PubMed  Google Scholar 

  49. Davenport, P. and Roath, S. 1982. A variable shear stress viscometer. Clin. Hemorheol. 2. 383–387.

    Google Scholar 

  50. Höppler, F. 1933. Z. techn. Physik 14. 165-; cited by W. Philippoff: Viskosität der Kolloide. Theodor Steinkopff, Dresden 1942.

    Google Scholar 

  51. Thurston, G.B. 1972. Viscoelasticity of human blood. Biophys. J. 12, 1205–1217.

    Article  PubMed  CAS  Google Scholar 

  52. Anadere, I., Chmiel, H., Hess, H., Thurston, G.B. 1979. Clinical blood rheology. Biorheology 16, 171–178.

    PubMed  CAS  Google Scholar 

  53. Born, G.V.R., Nicola, A.B. and Cusack, N.J. 1984. Functional physiology of platelets. 319–348 in Biggs, R. and Rizza, C.R. (eds.) Human Blood Coagulation, Hemostasis and Thrombosis. Blackwell, Oxford.

    Google Scholar 

  54. Craddock, P.R., Hammerschmidt, D., White, J.G., Dalmasso, A.P. and Jacob, HS. 1977. Complement (C5a)-induced granulocyte aggregation in vitro. A possible mechanism of complement - mediated leukostasis and leukopenia. J. Clin. Invest. 60, 260–264.

    Article  PubMed  CAS  Google Scholar 

  55. Brinkman, R., Zijlstra, W.G. and Jansonius, N.J. 1963. Quantitative evaluation of the rate of rouleaux formation of erythrocytes by measuring light reflection (Syllectometry). Proc. Kon. med. Akad. Wet. Ser. C66, 237–248.

    Google Scholar 

  56. Schmid-Schönbein, H, Volger, E. and Klose, H.J. 1972. Microrheology and light transmission of blood. The photometric quantification of red cell aggregate formation and dispersion in flow. Pflug. Arch. 333, 140–155.

    Google Scholar 

  57. Kiesewetter, H., Radtke, H., Schneider, R., Mussler, K., Scheffler, A. and Schmid-Schönbein, H. 1982. Das Mini-Erythrozyten-Aggregometer: Ein neues Gerät zur schnellen Quantifizierung des Ausmasses der Erythrozytenaggregation. Biomed. Technik 27, 209–213.

    Google Scholar 

  58. Ruhenstroth-Bauer, G., Porz, P., Boss, N., Koenig-Erich, S., Lehmacher, W. and Stamm, D. 1983. Der Erythrozyten - Aggregationswert als Mass von Hezinfarkt - Risikofaktoren und von Gefässschaeden. Münch, med. Wschr. 125 (36). 771–775.

    CAS  Google Scholar 

  59. Nordt, F.J., Boss, N. Korndorfer, D. and Ruhenstroth-Bauer, G. 1984. Flow cytometric quantitation of erythrocyte aggregation: foundation for a diagnostic test for coronary artery disease. Clin. Hemorheol. 4, 445–454.

    Google Scholar 

  60. Ernst, E. 1984. Erythrozyten - Aggregation statt BKS? Labor Praxis in der Medizin 11, 451–453.

    Google Scholar 

  61. Stoltz, J.F., Gaillard, S., Paulus, F., Henri, O. and Dixneuf, P. 1984. Experimental approach to rouleau formation. Comparison of three methods. Biorheology, Suppl. I. 221–226.

    Google Scholar 

  62. Rampling, M.W., Whittingstall, P. and Linderkamp, O. 1984. The effects of fibrinogen and its plasmin degradation products on the rheology of erythrocyte suspensions. Clin. Hemorheol. 4, 533–543.

    Google Scholar 

  63. Jandl, J.H., Simmons, R.L. and Castle, W.B. 1961. Red cell filtration and the pathogenesis of certain haemolytic anaemias. Blood, 18. 133–148.

    PubMed  CAS  Google Scholar 

  64. Teitel, A. and Radulescu, I. 1952. A method of determining erythrocyte plasticity. Medizina Interna, 5. 32.

    Google Scholar 

  65. Teitel, P. 1967. Le test de la filtrabilite erythrocytaire. Une methode simple d’etude de certaines propriétés microrheologiques des globules rouges. Nouv. Rev. franc. Hemat. 7. 195–214.

    Google Scholar 

  66. Teitel, P. 1977. Basic principles of the filterability test and analysis of erythrocytes’ flow behaviour. Blood Cells, 3, 55–70.

    Google Scholar 

  67. Gregersen, M.I., Bryant, G.A., Hammerle, W., Usami, A. and Chien, S. 1967. Flow characteristics of human erythrocytes through polycarbonate sieves. Science, 157. 825–827.

    Article  PubMed  CAS  Google Scholar 

  68. Schmid-Schöenbein, H., Weiss, J. and Ludwig, H. 1973. A simple method for measuring red cell deformability in models of the microcirculation. Blut, 26. 369–379.

    Article  Google Scholar 

  69. Ehrly, A.M. and Rossbach, P. 1973. Microrheology: studies with an 8 fxm filter system. Bibl. Anat. 11. 55–62.

    Google Scholar 

  70. Reid, H.L., Barnes, A.J., Lock, P.J., Dormandy, J.A. and Dormandy, T.L. 1976. A simple method for measuring erythrocyte deformability. J. Clin. Pathol. 29. 855–858.

    Google Scholar 

  71. Leblond, P.F. and Coulombe, L. 1979. The measurement of erythrocyre deformability using micropore membranes. J. Lab. Clin. Med. 94, 133–143.

    PubMed  CAS  Google Scholar 

  72. Chien, S. 1977. Principles and techniques for assesment erythrocytes deformability. Blood Cells, 3. 71–99.

    Google Scholar 

  73. Dormandy, J.A. (ed.), 1983. Red Cell Deformability and Filterability. pp. 223, Martinus Nijhoff, Boston.

    Google Scholar 

  74. Stuart, J. 1985. Erythrocyte rheology. J. Clin. Pathol. 38, 965–977.

    Google Scholar 

  75. Reinhart, W.H., Usami, S., Schmalzer, E.A., Lee, M.M.L. and Chien, S. 1984. Evaluation of red blood cell filterability test: Influences of pore size, hematocrit level, and flow rate. J. Lab. Clin. Med. 104, 501–516.

    Google Scholar 

  76. Teitel, P. 1983. Types of filters, pp. 117–146 in: Dormandy, J.A. (ed.) Red Cell Deformability and Filterability, Martinus Nijhoff, Boston.

    Google Scholar 

  77. Alderman, M.J. Ridge, A., Morley, A.A., Ryall, R.G. and Walsh, J.A. 1981. Effect of total leucocyte count on whole blood filterability in patients with peripheral vascular disease. J. Clin. Pathol. 34. 163–166.

    Google Scholar 

  78. Dodds, A.J., Boyd, M.I., Allen, J., Bennett, E.D., Flute, P.T. and Dormandy, J.A. 1980. Changes in red cell deformability and other haemorheological variables after myocardial infarction. Br. Heart J. 44, 508–511.

    Google Scholar 

  79. Hanss, M. 1983. Erythrocyte filterability mesurement by the initial flow rate method. Biorheol. 20. 199–211.

    CAS  Google Scholar 

  80. Milligan, D.W. 1983. Red cell deformability in polycythemia vera: the influence of white cell contamination. Clin. Hemorheol. 3. 155–162.

    Google Scholar 

  81. Kenny, M.W., Meakin, M. and Stuart, J. 1983. Methods for removal of leucocytes and platelets prior to study of erythrocyte deformability. Clin. Hemorheol. 3. 191–200.

    Google Scholar 

  82. Schoerer, R. and Muth, K. 1981. Filterability of whole blood and erythrocyte suspensions under the influence of several anticoagulants. La Ricerca Clin. Lab. 11. (Suppl. 1) 109–116.

    Google Scholar 

  83. Lucas, G.S., Caldwell, N.M., Kenny, M.W., Meakin, M., Aillaud, M.F., Billerey, M., Juhan- Vague, I. and Stuart, J. 1983. Effect of calcium-chelating and non-chelating anticoagulants on erythrocyte and leucocyte filterability. Clin. Hemorheol. 3, 451–467.

    Google Scholar 

  84. Artioli, F., Gelmini, G., Pedrazzoni, M., Dall’Asta, D. and Ferretti, P.G. 1984. Erythrocyte filtration: analysis of different methods by scanning electron microscopy. Clin. Hemorheol. 4. 409–418.

    Google Scholar 

  85. Schmalzer, E. and Chien, S. 1984. Filterability of subpopulations of leucocytes: effect of pentoxifylline. Blood 64, 542–546.

    PubMed  CAS  Google Scholar 

  86. Bogar, L. personal communication.

    Google Scholar 

  87. Chien, S., Schmalzer, E.A., Lee, M.M.L., Impelluso, T. and Skalak, R. 1983. Role of white cells in filtration of blood cell suspension. Biorheology, 20. 11–28.

    PubMed  CAS  Google Scholar 

  88. Skalak, R., Impelluso, T., Schmalzer, E.A. and Chien, S. 1983. Theoretical modeling of filtration of blood cell suspensions Biorheology 20. 41–56.

    CAS  Google Scholar 

  89. Skalak, R., Hanss, M. and Chien, S. 1983. Indices of filterability of red blood cell suspensions. Biorheology, 20. 311–316.

    PubMed  CAS  Google Scholar 

  90. Blackshear, P.L., Christianson, T.J., Majerle, R.J. and Vargas, F.F. 1979. Resistance of erythrocyte flow into pores. J. Rheology 23, 681–702.

    Article  Google Scholar 

  91. Cokelet, G.R. 1981. Dynamics of erythrocyte motion in filtration tests and in vivo flow. Scand. J. Clin. Lab. Invest. 41, Suppl. 156, 77–82.

    Google Scholar 

  92. Matrai, A., Reid, H., Bogar, L., Flute, P.T. and Dormandy, J.A. 1985. Initial filtration rate and initial clogging in the Hemorheometre. Biorheology 22, 275–284.

    PubMed  CAS  Google Scholar 

  93. Teitel, P. 1984. Recent progress in improving data processing in filtration measurements. Biorheology Suppl. I, 231–240.

    Google Scholar 

  94. Hanss, M. Koutsouris, D. 1984. Automated apparatus for the filtration initial flow rate measurement. Biorheology, Suppl. I; 275–277.

    Google Scholar 

  95. Matrai, A., Bogar, L., Flute, P.T. and Dormandy, J.A. 1984. Comparison of four blood filtration techniques. Clin. Hemorheol. 4, 513–523.

    Google Scholar 

  96. Stoltz, J.F., Duvivier, C. and Malher, E. 1984. Erythrometer: A new device for measuring erythrocyte filterability and plasma viscosity. Biorheology, Suppl. I; 255–259.

    Google Scholar 

  97. Merrill, E.W. 1969. Rheology of blood. Physiol. Rews. 49. 863–888.

    Google Scholar 

  98. Chien, S. 1972. Present state of blood rheology. pp. 1-40. in “Hemodilution, Theoretical Basis and Clinical Applications”, Messmer, K. and Schmid-Schönbein, H. (eds.), Karger, Basel.

    Google Scholar 

  99. Chien, S. 1975. Biophysical behavior of red cells in suspensions. 1031–1131 in: The Red Blood Cell, Vol. I I. Academic Press, New York.

    Google Scholar 

  100. Copley, A.L. and King, R.G. 1970. Rheogoniometric viscosity measurements of whole human blood at minimal shear rates down to 0.0009 sec-1. Experimentia, 26. 904–905.

    Article  CAS  Google Scholar 

  101. Goldsmith, H.L. 1971. Deformation of human red cells in tube flow. Biorheology 7, 235–242.

    PubMed  CAS  Google Scholar 

  102. Fischer, T.M., Stoehr-Liesen, M. and Schmid-Schönbein, H. 1978. The red cell as a fluid droplet; tank tread like motion of human erythrocyte membrane in shear flow. Science 202, 894–896.

    Article  PubMed  CAS  Google Scholar 

  103. Schmid-Schönbein, H., Rieger, H. and Fischer, T. 1980. Blood fluidity as a consequence of red cell fluidity: flow properties of blood and flow behavior of blood in vascular diseases. Angiology, 31. 301–319.

    Article  Google Scholar 

  104. Meiselman, H.J., Merrill, E.W., Gilliland, E.R., Pelletier, G.A. and Salzman, E.W. 1967. Influence of total plasma osmolality on the rheology of human blood. J. Appl. Physiol. 22. 772–781.

    Google Scholar 

  105. Scott-Blair, G.W. 1959. An equation for the flow of blood, plasma and serum through glass capillaries. Nature 183, 613–614.

    Article  Google Scholar 

  106. Whittington, R.B., and Harkness, J. 1982. Whole-blood viscosity, as determined by plasma viscosity, hematocrit, and shear. Biorheology, 19. 175–184.

    PubMed  CAS  Google Scholar 

  107. Harkness J. 1971. The viscosity of human blood plasma: its measurement in health and disease. Biorheology 8, 171–193.

    PubMed  CAS  Google Scholar 

  108. Ditzel, J. and Kampmann, J. 1971. Whole blood viscosity, hematocrit and plasma proteins in normal subjects at different ages. Acta Physiol. Scand. 81. 264–268.

    Google Scholar 

  109. Harkness, J. 1981. Measurement of plasma viscosity, pp 79-90 in: “Clinical aspects of blood viscosity and cell deformability”. G.D.O. Lowe, J.C. Barbanel and C. Forbes (eds.), Springer, Berlin.

    Google Scholar 

  110. Dintenfass, L. and Kammer, S. 1977. Plasma viscosity in 615 subjects, effect of fibrinogen, globulin and cholesterol in normals, peripheral vascular disease, retinopathy and melanoma. Biorheology 14, 247–251.

    PubMed  CAS  Google Scholar 

  111. Dintenfass, L. 1976. Rheology of blood in diagnostic and preventive medicine. Butterworth, London.

    Google Scholar 

  112. Charm, S.E., Paz, H. and Kurland, G.S. 1979. Reduced plasma viscosity among joggers compared with non-joggers. Biorheology 16, 185–189.

    PubMed  CAS  Google Scholar 

  113. Leonhardt, H. and Arntz, H.R. 1977. Zusammenhaenge zwischen kardiovaskulaeren Risikofaktoren und der Blutviskositaet unter besonderer Beruecksichtigung der Hyperlypoproteionaemien. Rheol. Acta 16, 368–377.

    Google Scholar 

  114. Ernst, E. and Matrai, A. 1985. Blutrheologie als Risikoindikator kardiovascularer Erkrankungen. Deutsch. Med. Wschrft. 110 (24) 967–970.

    Article  CAS  Google Scholar 

  115. Matrai, A., Bogar, L. and Fendler, K. 1979. A hematokrit es a fibrinogenszint szerepe a ver rheologiai tulajdonsagainak meghatarozasaban. Kis. Orvostud. 31. 204–212.

    Google Scholar 

  116. Gauer, O.H., Henry, J.P., Behn, C. 1970. The regulation of extracellular fluid volume. Ann. Rev. Physiol. 32, 547–595.

    Google Scholar 

  117. Tompson, W.O., Thompson, P.K. and Dailey, M.E. 1928. The effect of posture upon the composition and volume of the blood in man. J. Clin. Invest. 5, 573–604.

    Google Scholar 

  118. Fawcett J.K. and Wynn, V. 1960. Effects of posture on plasma volume and some blood constituents. J. Clin. Path. 13, 304–310.

    Google Scholar 

  119. Hagan, R.D., Diaz, F.J. and Horvath S.M. 1978. Plasma volume changes with movement to supine and standing positions. J. Appl. Physiol. 45, 414–418.

    Google Scholar 

  120. Ehrly, A.M. 1979. Influence of raised venous pressure on the flow properties of blood. Angiology 1, 21–26.

    Article  Google Scholar 

  121. Menayr, P., Nielsen, S.L., Christiansen, C. and Axelsson C. 1979. Gross errors made by routine blood sampling from two sides using a tourniquet applied at different positions. Clin. Chim. Acta 198, 113–118.

    Google Scholar 

  122. Juswigg, T., Batress, R., Solomons, N.W., Pineda, O. and Milne, D.B. 1982. The effect of temporary venous occlusion on trace mineral concentrations in plasma. Am. J. Clin. Nutr. 36, 354–357.

    Google Scholar 

  123. Eisenberg, S. Effect of posture and position of the venous sampling site on the hematocrit and serum protein concentration. J. Lab. Clin. Med. 61, 755–760, 1963.

    CAS  Google Scholar 

  124. Scheving, L.E., Halberg, D.F. and Pauly J.E. (eds.), 1974. Chronobiology. Thieme, Stuttgart.

    Google Scholar 

  125. Seaman, G.V.F, Engel, R., Swank, R. and Hissen, W. 1965. Circadian periodicity in some physicochemical parameters of circulating blood. Nature, 207, 833–835.

    Article  PubMed  CAS  Google Scholar 

  126. Ernst, E., Magyarosy, I. and Matrai, A. 1985. Are there diurnal changes in hemorheological parameters? Clin. Hemorheol. 5, 269–272.

    Google Scholar 

  127. Dintenfass, L., Julian, D.G. and Miller, G. 1966. Viscosity of blood in healthy young women. Effect of menstrual cycle. Lancet i: 234–235.

    Google Scholar 

  128. Ernst, E., Matrai, A. and Magyarosy, I. 1986. Complex environmental changes alter hemorheological, hematological and biochemical variables in volunteers. Clin. Hemorheol. 6., 251–256.

    Google Scholar 

  129. Galuzzi, N.J., Delashmutt, R.K. and Conolly, V.J. 1964. Failure of anticoagulants to influence the viscosity of whole blood. J. Lab. Clin. Med. 64, 773–777.

    Google Scholar 

  130. Meiselman, H.J., Frasher, W.G. and Wayland, H. 1973. In vivo hemorheology employing outflow viscometric techniques. Biorheology 10, 361–373.

    PubMed  CAS  Google Scholar 

  131. Reid, H. 1977. Erythrocyte deformability: Its measurement in normal man and in patients with peripheral circulatory disease. Ph. D. Thesis, University of London.

    Google Scholar 

  132. Barras, J.P. 1969. Blood Rheoloy. General Review. Bibl. Haemat. 33, 277–297.

    Google Scholar 

  133. Zingg, W., Sulew, J.C. and Morgan, C. 1973. Study of possible sources of error in clinical blood viscosity determinations with the Wells-Brookfield viscometer. Effects of fasting, food intake and sample handling. Biorheology 10, 509–515.

    Google Scholar 

  134. Ernst, E., Roloff, Ch., Megyarosy, I. and Drexel, H. 1984. Influence of anticoagulant, time and storing temperature on blood viscosity measurements. Clin. Hemorheol. 4, 419–422.

    Google Scholar 

  135. Whittington, R.B. and Harkness, J. 1984. On the capillary-tube viscometry of placental blood. Biorheology, Suppl. I; 111–114.

    Google Scholar 

  136. Whittington, R.B. 1942. Blood sedimentation; a study in haemo-mechanics. Proc. Roy. Soc. (B), 131, 183–190.

    Google Scholar 

  137. Merrill, E.W., Gilliland, E.R., Lee, T.S. and Salzman, E.W. 1966. Blood rheology. Effect of fibrinogen deduced by addition. Circ. Res. 18. 437–446.

    Google Scholar 

  138. Copley, A.L. (ed.), 1983. The Endoendothelial Fibrin Lining. Thrombosis Res. Suppl. V. 154 pp.

    Google Scholar 

  139. Dormandy, J.A. and Matrai, A. 1983. Assesment of pharmacological agents with a hemorheologieal action. Ann. N.Y. Acad. Sci. 416, 599–610.

    Article  PubMed  CAS  Google Scholar 

  140. Matrai, A., Ernst, E. and Dormandy, J.A. 1984. Die Rolle der Hämorheologie in der Medizin unter besonderer Berücksichtigung der Therapie mit Beta-Blockern. 140 - 148 in Heilmann, L, Kiesewetter, H. and Ernst, E. (eds.): Klinische Rheologie und Beta-1-Blockade. W. Zucksch- werdt, München.

    Google Scholar 

  141. Ernst, E., Weihmayr, T, Schmid, M., Bauman, M. and Matrai, A. 1985. Cardiovascular risk factors and hemorheology: physical fitness, stress and obesity. Atherosclerosis, 59, 263–269.

    Article  Google Scholar 

  142. Chien, S., Usami, S., Taylor, H.M., Lundberg, J.L. and Gregersen, M.I. 1966. Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J. Appl. Physiol. 21. 81–87.

    Google Scholar 

  143. Matrai, A. 1980. Ph. D. thesis, Univ. Med. Sch. Pecs, Hungary, 1980.

    Google Scholar 

  144. Matrai, A., Whittington, R.B. and Ernst, E. 1987. A simple method to estimate whole blood viscosity at standardized hematocrit. Clin Hemorheol. in press.

    Google Scholar 

  145. Dormandy, J.A. 1984. Fahreus Award Lecture: The dangereous red cell. Clin. Hemorheol. 4, 115–132.

    Google Scholar 

  146. Nicol, C.G. and Harkness, J. 1985. Viscosimetric monitoring of plasmapheresis. Clin. Hemor-heol. 5, 45–50.

    Google Scholar 

  147. Schmalzer, E.A., Skalak, R., Usami, S., Vayo, M. and Chien, S. 1983. Influence of red cell concentration on filtration of blood cell suspensions. Biorheology 20. 29–40.

    PubMed  CAS  Google Scholar 

  148. Bogar, L., Walker, T., Matrai, A. Dormandy, J.A. and Flute, P.T. 1985. Hemorheological effects of a 5-HT2 receptor antagonost (Ketanserin). Clin. Hemorheol. 5, 115–121.

    Google Scholar 

  149. Powell, J.E. and Stuart, J. 1984. Effect of metabolic stress and oxpentifylline on erythrocyte deformability (filterability). Clin. Hemorheol. 4, 483–491.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Matrai, A., Whittington, R.B., Skalak, R. (1987). Biophysics. In: Chien, S., Dormandy, J., Ernst, E., Matrai, A. (eds) Clinical Hemorheology. Developments in Cardiovascular Medicine, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4285-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4285-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8404-8

  • Online ISBN: 978-94-009-4285-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics