Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 235))

Abstract

Ordinary Hilbert-space quantum mechanics leads to a wrong prediction for the ground state of chiral molecules such as alanine. This does not mean that quantum mechanics is incorrect but only that it is not applied properly. A detailed analysis shows that chirality corresponds to a classical observable (a superselection rule) which is generated by the environment, i.e. by the influence of an infinite system. For both, classical observables and infinite systems, Hilbert space quantum mechanics is inappropriate and has to be replaced by algebraic quantum mechanics.

Two models for chirality are discussed:

  • The spin-boson model, where the single (eventually chiral) molecule is described by a two-level system. The infinitely many bosons of the model mimick the radiation field (the environment) which is inseparably coupled to the molecule.

  • The Ising model with a transverse field, which is built up of infinitely many spins representing, e.g., an infinite crystal.

Chiral KMS-states (thermodynamic states) arise only in the latter model. It is shown that this result fits nicely into a more subtle discussion of the different notions of states and their interpretation in algebraic quantum mechanics. For single individual molecules chirality may only be described on the level of pure states of the system. The possibility of a phase transition in the spin-boson model is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Hund: ‘Zur Deutung der Molekelspektren III’. Z.Phys. 43, 805 -826 (1927).

    Article  CAS  Google Scholar 

  2. P. Pfeifer: ‘Chiral Molecules — a Superselection Rule Induced by the Radiation Field’. Thesis, Eidgenössische Technische Hochschule, Diss. ETH No. 6551 (1980).

    Google Scholar 

  3. H. Primas: Chemistry, Quantum Mechanics, and Reductionism. Perspectives in Theoretical Chemistry. 2nd corrected edition. Springer, Berlin (1983).

    Google Scholar 

  4. A. Amann: ‘Observables in W*-Algebraic Quantum Mechanics’. Fortschr. Physik 34, 167–215 (1986).

    Article  Google Scholar 

  5. R. Jost: Quantenmechanik I. Verlag des Vereins der Mathematiker und Physiker an der ETH-Zürich, Zürich (1969).

    Google Scholar 

  6. A. Amann, U. Müller-Herold: ‘Momentum operators for large systems’. Helv.Phys.Acta 59, 1311–1320 (1986).

    Google Scholar 

  7. A. Amann: ‘Broken symmetries and the generation of classical observables in large systems’. Helv.Phys.Acta 60, 384–393 (1987).

    Google Scholar 

  8. J. Pöttinger: ‘Global quantities in algebraic quantum mechanics of infinite systems: Classical observables or parameters ?’. Preprint, ETH-Zürich (1987).

    Google Scholar 

  9. O. Bratteli, D.W. Robinson: Operator Algebras and Quantum Statistical Mechanics III. Springer, New York (1981).

    Google Scholar 

  10. M. Fannes, B. Nachtergaele, A. Verbeure: ‘The Equilibrium States of the Spin-Boson Model’. To be published in Commun.Math. Phys..

    Google Scholar 

  11. G. Raggio, personal communication.

    Google Scholar 

  12. R.J. Elliott, P. Pfeuty, C. Wood: ‘Ising model with a transverse field’. Phys.Rev.Lett. 25, 443–446 (1970).

    Article  Google Scholar 

  13. J. Oitmaa, M. Plischke: ‘Critical behaviour of the Ising model with a transverse field’. J.Phys.C 9, 2093–2102 (1976).

    Article  CAS  Google Scholar 

  14. P. Pfeuty: ‘Quantum classical crossover critical behavior of the Ising model in a transverse field’. Physica 86–88 B, 579 -580 (1977).

    Google Scholar 

  15. L.E. Thomas, Z. Yin: ‘Low Temperature Expansions for the Gibbs States of Weakly Interacting Quantum Ising Lattice Systems’. Commun.Math.Phys. 9l, 405–417 (1983).

    Article  Google Scholar 

  16. F.J. Dyson, E.H. Lieb, B. Simon: ‘Phase Transitions in Quantum Spin Systems with Isotropic and Nonisotropic Interactions’. J.Stat.Phys. 18, 335–383 (1978).

    Article  Google Scholar 

  17. A. Amann: ‘Jauch-Piron states in W*-algebraic quantum mechanics’. J.Math.Phys. 28, 2384–2389 (1987).

    Article  Google Scholar 

  18. M. Reed, B. Simon: Methods of Modern Mathematical Physics II. Fourier Analysis, Self-Adjointness. Academic Press, New York (1975).

    Google Scholar 

  19. A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, W. Zwerger: ‘Dynamics of the dissipative two-state system’. Rev. Mod. Phys. 59, 1–85 (1987).

    Article  CAS  Google Scholar 

  20. H. Spohn, R. Dümcke: ‘Quantum Tunneling with Dissipation and the Ising Model over R’. J.Stat.Phys. 41, 389–423 (1985).

    Article  Google Scholar 

  21. H. Spohn: ‘Models of Statistical Mechanics in One Dimension Originating From Quantum Ground States’. In: Statistical Mechanics and Field Theory: Mathematical Aspects. Lecture Notes in Physics 257. Springer, Berlin (1986).

    Google Scholar 

  22. C. Aslangul, N. Pottier, D. Saint-James: ‘Spin-boson systems: equivalence between the dilute-blip and the Born approximations’. J.Physique 47, 1657–1661 (1986).

    Article  Google Scholar 

  23. M. Takesaki: Theory of Operator Algebras I. Springer, New York (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Amann, A. (1988). Chirality as a Classical Observable in Algebraic Quantum Mechanics. In: Amann, A., Cederbaum, L.S., Gans, W. (eds) Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics. NATO ASI Series, vol 235. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3005-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3005-6_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7850-4

  • Online ISBN: 978-94-009-3005-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics