Skip to main content

The determination of fluid flow at the core surface from geomagnetic observations

  • Chapter
Mathematical Geophysics

Part of the book series: Modern Approaches in Geophysics ((MAGE,volume 3))

Abstract

We examine the problem of using observations of the Earth’s magnetic field to study the kinematics of fluid flow at the surface of the core. In particular, we study two nonlinear inverse problems: the problem of inferring maps of the magnetic field at the core-mantle boundary from observations of the field made at the earth’s surface; and the problem of using maps of the field at the core-mantle boundary to infer the fluid flow in the core immediately beneath the boundary. Both inverse problems are continuous and unstable: adequate regularization conditions must be employed if meaningful solutions are to be obtained. We highlight the inadequacy of the traditional approach to these problems, that of arbitrarily truncating the resulting expansions in terms of spherical harmonic basis functions, in the framework of stochastic inversion, to regularize the solutions based on the requirement that the solutions should be spatially smoothly-varying. We present models of the field at the core-mantle boundary for 1842, 1905, 1969 and 1980. In order to invert these models of the magnetic field for fluid motions the field must satisfy certain necessary conditions. We find some weak evidence that the field violates these conditions, resulting from the effects of electrical diffusion in the core, over the period 1969–1980. We find very simple, but necessarily nonunique, fluid flow solutions for the periods 1842–1905, 1905–1980 and 1966–1980: the effects of diffusion are clearly apparent in the 1905–1980 solution. We investigate a simple explanation for the rapid diffusion observed during the period 1905–1980, and discuss how diffusive effects may be incorporated into the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allan, D.W., 1961. Secular variation of the earth’s magnetic field, PhD. Thesis, University of Cambridge.

    Google Scholar 

  • Allan, D.W. and Bullard, E.C., 1958. Distortion of a toroidal field by convection, Rev. Mod. Phys., 30, 1087–1088.

    Article  Google Scholar 

  • Allan, D.W. and Bullard, E.C., 1966. The secular variation of the earth’s magnetic field, Proc. Camb. Phil. Soc., 62, 783–809.

    Article  Google Scholar 

  • Backus, G.E., 1968. Kinematics of the secular variation in a perfectly conducting core, Phil. Trans. R. Soc, A263, 239–266.

    Google Scholar 

  • Backus, G.E., 1970a. Non-uniqueness of the external geomagnetic field determined by surface intensity measurements, J. Geophys. Res., 75, 6339–6341.

    Article  Google Scholar 

  • Backus, G.E., 1970b. Inference from inadequate and inaccurate data I, Proc. Nat. Acad. Sci., 65, 1–7.

    Article  Google Scholar 

  • Backus, G.E. and LeMouël, J.-L., 1986. The region on the core-mantle boundary where a geostrophic velocity field can be determined from frozen-flux geomagnetic data, Geophys. J. R. Astr. Soc., 85, 617–628.

    Google Scholar 

  • Barraclough, D.R., 1978. Spherical harmonic models of the geomagnetic field, Geomagn. Bull. Inst. Geol. Sci., 8.

    Google Scholar 

  • Benton, E.R. and Whaler, K.A., 1983. Rapid diffusion of the poloidal geomagnetic field through the weakly-conducting mantle: A perturbation solution, Geophys. J. R. Astr. Soc., 75, 77–100.

    Google Scholar 

  • Benton, E.R., Estes, R.H., Lahgel, R.A. and Muth, L.A., 1982. Sensitivity of selected geomagnetic properties to truncation level of spherical harmonic expansions, Geophys. Res. Lett., 9, 254–257.

    Article  Google Scholar 

  • Bloxham, J., 1986a. Models of the magnetic field at the core-mantle boundary for 1715, 1777 and 1842, J. Geophys. Res., in press.

    Google Scholar 

  • Bloxham, J., 1986b. The expulsion of magnetic flux from the Earth’s core, Geophys. J. R. Astr. Soc., 87, 669–678.

    Google Scholar 

  • Bloxham, J. and Gubbins, D., 1985. The secular variation of Earth’s magnetic field, Nature, 317, 777–781.

    Article  Google Scholar 

  • Bloxham, J. and Gubbins, D., 1986. Geomagnetic field analysis — IV: Testing the frozen-flux hypothesis, Geophys. J. R. Astr. Soc., 84, 139–152.

    Google Scholar 

  • Bullard, E.C. and Gellman, H., 1954. Homogeneous dynamos and terrestrial magnetism, Phil. Trans. R. Soc, A247, 213–278.

    Google Scholar 

  • Busse, RH., 1975. A model of the geodynamo, Geophys. J. R.. Astr. Soc., 42, 437–459.

    Article  Google Scholar 

  • Gubbins, D., 1983. Geomagnetic field analysis — I: Stochastic inversion, Geophys. J. R. Astr. Soc., 73, 641–652.

    Google Scholar 

  • Gubbins, D. and Bloxham, J., 1985. Geomagnetic field analysis — III: Magnetic fields on the core-mantle boundary, Geophys. J. R. Astr. Soc., 80, 695–713.

    Google Scholar 

  • LeMouël, J.-L., 1984. Outer core geostrophic flow and secular variation of earth’s geomagnetic field, Nature, 311, 734–735.

    Article  Google Scholar 

  • LeMouël, J.-L., Gire, C. and Madden, T., 1985. Motions at core surface in the geostrophic approximation, Phys. Earth Planet. Inter., 39, 270–287.

    Article  Google Scholar 

  • Moffatt, H.K., 1978. Magnetic field generation in electrically conducting fluids, Cambridge University Press.

    Google Scholar 

  • Nagata, T. and Rikitake, T., 1961. Geomagnetic secular variation and poloidal magnetic fields produced by convectional motions in the earth’s core,/. Geomagn. Geoelectr., 13, 42–53.

    Article  Google Scholar 

  • Orszag, S.A., 1970. Transform method for the calculation of vector-coupled sums: Application to the spectral form of the vorticity equation, J. Atmos. Sci., 27, 890–895.

    Article  Google Scholar 

  • Parker, R.L. and Shure, L., 1982. Efficient modelling of the earth’s magnetic field with harmonic splines, Geophys. Res. Lett., 9, 812–815.

    Article  Google Scholar 

  • Rikitake, T., 1967. Non-dipole field and fluid motion in earth’s core, J. Geomagn. Geoelectr., 19, 129–142.

    Article  Google Scholar 

  • Roberts, P.H. and Scott, S., 1965. On analysis of secular variation 1. A hydromagnetic constraint: theory, J. Geomagn. Geoelectr., 17, 137–151.

    Article  Google Scholar 

  • Shure, L., Parker, R.L. and Backus, G.E., 1982. Harmonic splines for geomagnetic field modelling, Phys. Earth Planet. Inter, 32, 114–131.

    Article  Google Scholar 

  • Shure, L., Parker, R.L. and Langel, R.A., 1985. A preliminary harmonic spline model from Magsat data, J. Geophys. Res., 90, 11505–11512.

    Article  Google Scholar 

  • Voorhies, C.V., 1986. Steady flows at the top of earth’s core derived from geomagnetic field models, J. Geophys. Res., 91, 12444–12466.

    Article  Google Scholar 

  • Voorhies, C.V. and Backus, G.E., 1985. Steady flows at the top of the core from geomagnetic field models: the steady motions theorem, Geophys. Astrophys. Fluid Dyn., 32, 162–173.

    Article  Google Scholar 

  • Whaler, K.A., 1986. Geomagnetic evidence for fluid upwelling at the core-mantle boundary, Geophys. J. R. Astr. Soc., 86, 563–588.

    Google Scholar 

  • Whaler, K.A. and Gubbins, D., 1981. Spherical harmonic analysis of the geomagnetic field: An example of a linear inverse problem, Geophys. J. R. Astr. Soc., 65, 645–693.

    Google Scholar 

  • Winch, D.E., 1974. Evaluation of geomagnetic dynamo integrals, J. Geomagn. Geoelectr., 26, 87–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company

About this chapter

Cite this chapter

Bloxham, J. (1988). The determination of fluid flow at the core surface from geomagnetic observations. In: Vlaar, N.J., Nolet, G., Wortel, M.J.R., Cloetingh, S.A.P.L. (eds) Mathematical Geophysics. Modern Approaches in Geophysics, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2857-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2857-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7785-9

  • Online ISBN: 978-94-009-2857-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics