Skip to main content

Part of the book series: Geobotany ((GEOB,volume 16))

Abstract

Plants, besides their key importance in energy flow, also play a major role in the circulation of the chemical elements. Primary production, i.e. conversion of radiant energy into chemical energy in photosynthesis, necessarily involves a large number of chemical elements. Primary production, i.e. conversion of radiant energy into chemical elements. The elements essentially required for the life processes are known as nutrients. Energy and the chemical elements flow together through the community and are indeed inseparable and interdependent. However, unlike energy, chemical elements return to their respective pools after death and decay of the organisms and are available for reuse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ajmal, M., Khan, M. A. & Nomani, A.A., 1985. Distribution of heavy metals in plants and fish of the Yamuna river (India). Environ. Monit. Assess. 5: 361–369.

    Article  CAS  Google Scholar 

  • Ayyappan, S., Olah, J., Raghavan, S.L., Sinha, V.R.P. & Purushottaman, C.S., 1986. Macrophyte decomposition in two tropical lakes. Arch. Hydrobiol. 126: 219–231.

    Google Scholar 

  • Best, E.P.H. & Mantai, K.E., 1978. Growth of Myriophyllum: sediment or lake water as the source of nitrogen and phosphorus. Ecology 59:1075–1080.

    Article  CAS  Google Scholar 

  • Billore, D.K., Sankhla, S.K. & Vyas, L.N., 1983. Mineral composition of some important macrophytes in two lakes around Udaipur (Rajasthan). Acta Ecol. 5(2): 39–48.

    Google Scholar 

  • Bjork, S., 1967. Ecologie investigations of Phragmites communis. Folia Limnol. Scandinav. 14: 1–238.

    Google Scholar 

  • Carpenter, S.R., 1980. Enrichment of Lake Wingra, Wisconsin, by submerged macrophyte decay. Ecology 61: 1145–1155.

    Article  Google Scholar 

  • Carpenter, S.R., 1981. Comparisons of equations for decay of leaf litter in tree hole ecosystems. Oikos 39: 17–22.

    Article  Google Scholar 

  • Capenter, S.R. & Adams, M.S., 1979. Effects of nutrients and temperature on decomposition of Myriophyllum spicatum L. in a hardwater eutrophic lake. Limnol. Oceanogr. 24: 4520–528.

    Google Scholar 

  • Davis, C.B. & van der Valk, A., 1983. Uptake and release of nutrients by living and decomposing Typha glauca Godr. tissues at Eagle lake, Iowa. Aquat. Bot. 16: 75–89.

    Article  CAS  Google Scholar 

  • Davis, C.B. & van der Valk, A., 1988. Ecology of a semitropical monsoonal wetland in India: The Keoladeo Ghana National Park, Bharatpur, Rajasthan. Final Report, 1984–1987. Iowa State Univ., Ames, Iowa, USA

    Google Scholar 

  • DeBusk, T.A. & Dierberg, F.E., 1984. Effect of nitrogen and fiber content on the decomposition of the water hyacinth (Eichhornia crassipes (Mart.) Solms.). Hydrobiologia 118: 199–204.

    Article  Google Scholar 

  • de la Cruz, A.A. 1979. Production and transport of detritus in wetlands. In: Greeson, P.E., Clark, J.R. & Clark, J.E. (ed), Wetland Functions and Values: the State of our Understanding, pp. 162–174. Amer. Water Resources Assoc., Minneapolis, USA.

    Google Scholar 

  • Denny, P., 1987. Mineral cycling in wetland plants — a review. In: Pokorny, J., Lhotsky, O., Denny, P. & Turner, E.G. (ed), Waterplants and Wetland Processes, pp. 1–26. Arch. Hydrobiol., Beih. Ergebnisse der Limnologie, 27. Schweizerbart’sche Verlag., Stuttgart.

    Google Scholar 

  • Dykyjova, B., 1979. Selective uptake of mineral ions and their concentration factors in aquatic higher plants. Folia Geobot. Phytotax., Praha 14: 267–325.

    Google Scholar 

  • Gessner, F., 1959. Hydrobotanik. Die physiologischen Grundlagen der Pflanzenverbreitung im Wasser. II. Stoffhaushalt. VEB Deutscher Verlag der Wissenschaften, Berlin. 701 pp.

    Google Scholar 

  • Godfrey, P.J., Kaynor, E.R., Pelczarski, S. & Benforado, J. (ed), 1985. Ecological Considerations in Wetlands Treatment of Municipal Wastewaters. Van Nostrand Reinhold Co., New York. 465 pp.

    Google Scholar 

  • Godshalk, G.L. & Wetzel, R.G., 1978a. Decomposition of aquatic angiosperms. I. Dissolved components. Aquat. Bot. 5: 281–300.

    Article  CAS  Google Scholar 

  • Godshalk, G.L. & Wetzel, R.G., 1978b. Decomposition of aquatic angiosperms. II. Particulate components. Aquat. Bot. 5: 301–328.

    Article  CAS  Google Scholar 

  • Godshalk, G.L. & Wetzel, R.G., 1978c. Decomposition of aquatic angiosperms. III. Zostera marina L. and a conceptual model for decomposition. Aquat. Bot. 5: 329–354.

    Article  CAS  Google Scholar 

  • Godshalk, G.L. & Wetzel, R.G., 1978d. Decomposition in littoral zones of lakes. In: Good, R.E., Whigham, D.F. & Simpson, R.L. (ed), Freshwater Wetlands, pp. 143–151. Academic Press, New York.

    Google Scholar 

  • Gopal, B., 1982. Ecology and management of freshwater wetlands in India. In: SCOPE/UNEP Workshop Proc. Ecosystem Dynamics in Freshwater Wetlands and Shallow Water Bodies, pp. 127–162. GKN, Moscow.

    Google Scholar 

  • Gopal, B., 1987. Water Hyacinth. Elsevier, Amsterdam. 471 pp.

    Google Scholar 

  • Gopal, B. (with contribution by V. Masing), 1989. Biology and ecology. In: Patten, B.C., Jorgensen, S., Dumont, H.J., Gopal, B., Koryavov, P.P., Kvet, J., Löffler, H., Sverizhev, Y.M. & Tundisi, J. (ed), Continental Wetlands and Shallow Water Bodies. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Gopal, B. & Kulshreshtha, M., 1980. Role of aquatic macrophytes as a reservoir of nutrients and in their cycling. Int. J. Ecol. Environ. Sci. 6: 145–152.

    CAS  Google Scholar 

  • Gopal, B. & Sharma, K.P., 1984. Seasonal changes in concentration of major nutrient elements in the rhizomes and leaves of Typha elephantina Roxb. Aquat. Bot. 20: 65–73.

    Article  CAS  Google Scholar 

  • Guha, J., 1965. Diurnal variation of the carbohydrate and nitrogen contents in the leaves and stems of Hydrilla verticillata Casp. during its vegetative phase. Bull. Bot. Soc. Bengal 19: 28–31.

    Google Scholar 

  • Handoo, J.K. & Kaul, V., 1982. Standing crop and nutrient dynamics in Sparganium ramosum Huds. in Kashmir. Aquatic Bot. 12: 375–387.

    Article  Google Scholar 

  • Howard Williams, C., 1985. Cycling and retention of nitrogen and phosphorus in wetlands: a theoretical and applied perspective. Freshwat. Biol. 15: 391–431.

    Article  CAS  Google Scholar 

  • Howard Williams, C. & Junk, W. J., 1976. The decomposition of aquatic macrophytes in the floating meadows of a central Amazonian Varzea lake. Biogeographica 7: 115–123.

    Google Scholar 

  • Howard Williams, C., Pickmere, S. & Davies, J., 1988. The effect of nutrients on aquatic plant decomposition rates. Verh. Int. Ver. Limnol. 23: 1973–1978.

    CAS  Google Scholar 

  • Hutchinson, G.E., 1975. A Treatise of Limnology. Vol. 3. Limnological Botany. Wiley, New York. 660pp.

    Google Scholar 

  • Karim, Ali, 1948. Microbiological decomposition of water hyacinth. Soil Sci. 66: 401–416.

    Article  CAS  Google Scholar 

  • Kaul, S. 1983. Chemical composition of aquatic vegetation in some typical wetlands of Kashmir. Acta Hydrochim. Hydrobiol. 11: 47–57.

    Article  CAS  Google Scholar 

  • Kaul, V., Trisal, C.L. & Kaul, S., 1980. Mineral removal potential of some macrophytes in two lakes of Kashmir. J. Indian Bot. Soc. 59: 108–118.

    Google Scholar 

  • Kaul, S., Trisal, C.L. & Kaul, V, 1981. Mineral composition of wetland components in Kashmir, India. Int. J. Ecol. Environ. Sci. 7: 83–88.

    Google Scholar 

  • Klopatek, J.M., 1978. Nutrient dynamics of freshwater riverine marshes and the role of emergent macrophytes. In: Good, R.E., Whigham, D.F. & Simpson, R.L. (ed), Freshwater Wetlands, pp. 195–216. Academic Press, New York.

    Google Scholar 

  • Kulasooriya, S.A., Hirimburegama, W.K. & Abeysekara, S.W., 1982. Growth and nitrogen fixation in Azolla pinnata under field conditions. J. Nat. Sci. Council Sri Lanka 10: 205–212.

    Google Scholar 

  • Kulshreshtha, M., 1982a. Comparative ecological studies on two species of Ceratophyllum. Proc. 6th EWRS Int. Symp. Aquatic Weeds, Novi Sad, pp. 29–36.

    Google Scholar 

  • Kulshreshtha, M., 1982b. Laboratory studies on decomposition of Lemna minor and Utricularia flexuosa. Regional Workshop on Limnology and Water Resources Management in the Developing Countries of Asia and the Pacific, Kuala Lumpur. Abstracts, p. 46.

    Google Scholar 

  • Kulshreshtha, M. & Gopal, B., 1982a. Decomposition of freshwater wetland vegetation. I. Submerged and free-floating macrophytes. In: Gopal, B., Turner, R.E. Wetzel, R.G. & Whigham, D.F. (ed), Wetlands: Ecology and Management, pp. 261–280. Nat. Inst. Ecol., and Int. Sci. Pubis., Jaipur.

    Google Scholar 

  • Kulshreshtha, M. & Gopal, B., 1982b. Decomposition of freshwater wetland vegetation. II. Aboveground organs of emergent macrophytes. In: Gopal, B., Turner, R.E., Wetzel, R.G. & Whigham D.F. (ed), Wetlands: Ecology and Management, pp. 281–296. Nat. Inst. Ecol., and Int. Sci. Pubis., Jaipur.

    Google Scholar 

  • Kulshreshtha, M. & Gopal, B., 1982c. Observations on nutrient removal by freshwater macrophytes under different habitat conditions in Jaipur (India). Int. Rev. Ges. Hydrobiol. 67: 543–553.

    Google Scholar 

  • Lumpkin, T.A. & Plucknett, D.L., 1980. Azolla: Botany, physiology and use as a green manure. Econ. Bot. 34: 111–153.

    Article  CAS  Google Scholar 

  • Melack, J.M. & Fisher, T.R., 1988. Denitrification and nitrogen fixation in an Amazon floodplain lake. Verh. Int. Ver. Limnol. 23: 2232–2236.

    CAS  Google Scholar 

  • Minderman, G., 1968. Addition, decomposition and accumulation of organic matter in forests. J. Ecol. 56: 355–362.

    Article  Google Scholar 

  • Misra, R.D., 1938. Edaphic factors in the distribution of aquatic plants in the English lakes. J. Ecol. 26: 411–451.

    Article  CAS  Google Scholar 

  • Mulder, E.G., Lie, T.A. & Woldendrop, J.W., 1969. Biology and soil fertility. In: Soil Biology: Reviews of Research, pp. 163–208. UNESCO, Paris.

    Google Scholar 

  • Murty, K.S.N., 1987. An ecological study of lake Kondakarla. Ph.D. thesis, Andhra Univ., Waltair, India.

    Google Scholar 

  • Murty, K.S.N & Seshavatharam, V., 1985. Some observations on the nutrient release during the decomposition of Ipomoea aquatic Forsk. J. Environ. Sci. 1: 50–55.

    Google Scholar 

  • Nadkarni, R.A. & Chaphekar, S.B., 1979. A plant species of suspected accumulator behaviour. Experientia 33: 34.

    Article  Google Scholar 

  • Neely, R.K. & Davis, C.B., 1985. Nitrogen and phosphorus fertilization of Sparganium eurycarpum Engelm. and Typha glauca Godr. stands. II. Emergent plant decomposition. Aquat. Bot. 22: 363–375.

    Google Scholar 

  • Panwar, M.R.S. & Sharma, P.D., 1983. Fungal colonization of Scirpus tuberosus Desf. Rev. Ecol. Biol. Sol. 20: 299–316.

    Google Scholar 

  • Panwar, M.R.S. & Sharma, P.D., 1981. Possible factors in tardy decomposition of Scirpus tuberosus leaves by fungi. Acta Bot. Indica 9: 213–217.

    Google Scholar 

  • Pieczynska, E., 1976. Destruction. In: Pieczynska, E. (ed), Selected Problems of Lake Littoral Ecology, pp. 195–209. Warswa Univ., Warsaw.

    Google Scholar 

  • Polunin, N.V.C., 1986. The decomposition of emergent macrophytes in freshwater. Adv. Ecol. Res. 14: 115–165.

    Article  Google Scholar 

  • Radhakrishnan, E.V., Gore, P.S., Raveendran, O. & Unnithan, R.V., 1979. Microbial decomposition of the floating weed Salvinia molesta Aublet in Cochin backwaters. Indian J. Mar. Sci. 8: 170–174.

    Google Scholar 

  • Rao, K.V., Khandekar, A.K. & Vaidyanadhan, D., 1973. Uptake of fluoride by water hyacinth. Indian J. Exp. Biol. 11: 68–69.

    CAS  Google Scholar 

  • Reddy, K.R., 1983. Fate of nitrogen and phosphorus in a wastewater retention reservoir containing aquatic macrophytes. J. Environ. Qual. 12: 137–141.

    Article  CAS  Google Scholar 

  • Reddy, K.R. & Smith, W.H. (ed), 1987. Aquatic Plants for Water Treatment and Resource Recovery. Magnolia Publishing, Orlando, Florida. 1032 pp.

    Google Scholar 

  • Reddy, K.R. & Tucker, J.C., 1983. Productivity and nutrient uptake of water hyacinth, Eichhornia crassipes. I. Effect of nitrogen source. Econ. Bot. 37: 237–247.

    Article  CAS  Google Scholar 

  • Rogers, K.H. & De Bruyn, J., 1988. Decomposition of Paspalum distichum L.: Methodology in seasonally inundated systems. Verh. Int. Ver. Limnol. 23: 1945–1948.

    Google Scholar 

  • Rother, J.A. & Whitton, B.A., 1988. Mineral composition of Azolla pinnata in relation to composition of floodwaters in Bagladesh. Arch. Hydrobiol. 113: 371–380.

    CAS  Google Scholar 

  • Salomons, W. & Förstner, U., 1984. Metals in the Hydrocycle. Springer Verlag, Berlin. 349 pp.

    Google Scholar 

  • Sardana, R.K. & Mehrotra, R.S., 1981. Decomposition studies on three submerged macrophytes in the Brahmsarovar tank of Kurukshetra (India). Trop. Ecol. 22: 187–193.

    Google Scholar 

  • Schwoerbel, J. & Tillmanns, G.C., 1964. Untersuchungen über die Stoffwechseldynamik in Fliessgewässern. I and II. Arch. Hydrobiol. (Suppl.) 28: 245–267.

    Google Scholar 

  • Shah, J.D., Abbas, S.G. & Sinha, S.K.P., 1979. Seasonal fluctuations in the total nitrogen content of some aquatic macrophytes of the river Ganges at Bhagalpur, Bihar. Nat. Acad. Sci. Letters 2: 283–284.

    CAS  Google Scholar 

  • Sharma, K.P. & Goel, P.K., 1986. Studies on decomposition of two species of Salvinia. Hydrobiologia 131: 57–61.

    Article  Google Scholar 

  • Sharma, K.P. & Goel, P.K., 1987. Decomposition of water hyacinth, Eichhornia crassipes (Mart.) Solms. Int. J. Ecol. Environ. Sci. 13: 13–18.

    CAS  Google Scholar 

  • Sharma, K.P. & Gopal, B., 1982. Decomposition and nutrient dynamics in Typha elephantina Roxb. under different water regimes. In: Gopal, B., Turner, R.E., Wetzel, R.G. & Whigham, D.F. (ed), Wetlands: Ecology and Management, pp. 321–334. Nat. Inst. Ecol., and Int. Sci. Pubis., Jaipur.

    Google Scholar 

  • Sharma, P.D. & Panwar, M.R.S., 1981. Cellulolysis rate and saprophytic survival of some microfungi colonising leaves of Scirpus tuberosus. Acta Bot. Indica 9: 325–328.

    Google Scholar 

  • Singh, P.K., 1979. Symbiotic algal nitrogen fixation and crop productivity. Ann. Rev. Plant Sci., Kalyani Publishers, New Delhi, pp. 37–65.

    Google Scholar 

  • Singh, R.P. & Singh, P.K., 1987. Growth and nitrogen fixation of various Indian isolates of Azolla pinnata R. Br. under laboratory and field conditions. Proc. Indian Acad. Sci., Plant Sci. 97: 227–229.

    CAS  Google Scholar 

  • Thakurta, S.C. & Mitra, E., 1977. Absorption of ions from the environment for the destruction of aquatic plants. I. Treatment with copper sulphate. Sci. Cult. 43: 402–405.

    CAS  Google Scholar 

  • Trisal, C.L. & Kaul, S., 1983. Sediment composition, mudwater interchanges and the role of macrophytes in Dal lake, Kashmir. Int. Revue ges. Hydrobiol. 68: 671–682.

    Article  CAS  Google Scholar 

  • Trivedy, R.K. & Gopal, B., 1981. Seasonal changes in growth and mineral composition of water hyacinth (Eichhornia crassipes). Acta Limnol. Indica 1: 41–44.

    CAS  Google Scholar 

  • Ueki, K., 1978. Habitat and nutrition of water hyacinth. JARQ 12: 121–127.

    CAS  Google Scholar 

  • Unni, K.S., 1970. Seasonal variation in chemical constituents of some aquatic plants. J. Bombay Nat. Hist. Soc. 69: 242–246.

    Google Scholar 

  • Varshney, C.K. & Mandhan, K., 1980. Nitrogen fixation by Fimbristylis bisumbellata (Forsk.) Bub. Curr. Sci. 50: 280–281.

    Google Scholar 

  • Varshney, C.K. & Mandhan, K., 1982. Estimation of nitrogen fixation associated with Typha angustata Bory et Chaub. Aquat. Bot. 13: 351–357.

    Article  CAS  Google Scholar 

  • Visser, S.A., 1964. A study on the decomposition of Cyperus papyrus in the swamps of Uganda in natural peat deposits as well as in the presence of various additives. East African Agric. Forest. J. 29: 268–287.

    CAS  Google Scholar 

  • Vora, A.B. & Rao, Venkateshwar, 1988. Water hyacinth as a scavenger of heavy metals from polluted waters of the river Sabarmati, Ahmedabad. Adv. Plant Sci. 1: 1–6.

    Google Scholar 

  • Vyas, S.C., 1973. A study of the primary productivity and nutrient cycling in a lake. Ph.D. thesis, Vikram Univ., Ujjain.

    Google Scholar 

  • Vyas, S.C. & Das, R.R., 1978. Protein content of some hydrophytes. Aquat. Bot. 5: 207–208.

    Article  Google Scholar 

  • Webster, J.R. & Benfield, E.F., 1986. Vascular plant breakdown in freshwater ecosystems. Ann. Rev. Ecol. Syst. 17: 567–594.

    Article  Google Scholar 

  • Wetzel, R.G., 1983. Limnology. Saunders College Publishing, Philadelphia. 767+ 91 pp.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gopal, B. (1990). Nutrient dynamics of aquatic plant communities. In: Gopal, B. (eds) Ecology and management of aquatic vegetation in the Indian subcontinent. Geobotany, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1984-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1984-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7387-5

  • Online ISBN: 978-94-009-1984-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics