Skip to main content

Identification and Measure of Hydromorphological Degradation in Central European Lowland Streams

  • Chapter
Integrated Assessment of Running Waters in Europe

Part of the book series: Developments in Hydrobiology ((DIHY,volume 175))

Abstract

The objective of the current study was to identify hydromorphological variables that are suitable to define and describe hydromorphological degradation. Stream type-specific and spatial scale-dependent multivariate analysis (Non-metric Multidimensional Scaling, NMS) of 106 hydromorphological variables derived from 275 samples at 147 sites and indicator value analysis (IndVal) resulted in the identification of key factors describing ydromorphological differences in Central European lowland streams. Sample sites represented six European stream types from Sweden (1 stream type), The Netherlands (2 stream types), and Germany (3 stream types). The four large-scale hydro(geo)morphological variables: catchment size, geology (‘% moraines’, ‘% alluvial deposits’), and natural land use (‘% natural forest’) explained inter-stream type differences best. On the smaller site scale, riparian vegetation described inter-stream type differences best.

On catchment scale, ‘% natural forest’, and ‘agricultural land use’ illustrated inter-stream type hydromorphological degradation of all six stream types very well. Four site related variables (‘% wooded riparian vegetation’, ‘% shading’, ‘average stream width’, and ‘% macrolithal (cobbles, 20 to 40 cm long) account for hydromorphological degradation on the smaller reach-scale. An analysis of indicator variables restricted to German stream types only resulted in four factors, namely ‘% xylal’ (tree trunks, branches, roots, etc.), ‘no of debris dams >0.3 m3’, ‘no of logs >10 cm ∅’, and ‘% fixed banks’ as important descriptors of hydromorphological degradation. Intra-stream type hydromorphological degradation is illustrated for ‘mid-sized sand bottom streams in the German lowlands’. For this stream type, a clear gradient of degradation was revealed, and 25 variables were identified to entirely characterize reference conditions and degradation. The variables that described the degradation gradient best were combined to the new German Structure Index (GSI), which can be implemented to continuously measure hydromorphological degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Addinsoft SARL, 2002. XLSTAT 5.2. Addinsoft, Paris.

    Google Scholar 

  • Agence-de-1’Eau-Rhin-Meuse, 1996. Outil d’évaluation de la qualite du milieu physique. Metz.

    Google Scholar 

  • Allan, J. D., D. L. Erickson & J. Fay, 1997. The influence on catch-ment land use on stream integrity across multiple spatial scales. Freshwat. Biol. 37: 149–161.

    Article  Google Scholar 

  • AQEM consortium, 2002. Manual for the application of the AQEM system. A comprehensive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the Water Framework Directive. EVK1-CT1999-00027, Version 1.0. Available via the Internet from

    Google Scholar 

  • Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid bioassessment protocols for use in streams and wade-able rivers: periphyton, benthic macroinvertebrates and fish. EPA 841-B-99-002, U.S. Environmental Protection Agency, Office of Water, Washington D.C.

    Google Scholar 

  • Beisel, J.-N., P. Usseglio-Polatera, S. Thomas & J.-C. Moreteau, 1998a. Effects of mesohabitat sampling strategy on the assessment of stream quality with benthic invertebrate assemblages. Arch. Hydrobiol. 142: 493–510.

    Google Scholar 

  • Beisel, J.-N., P. Usseglio-Polatera, S. Thomas & J.-C. Moreteau, 1998b. Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. Hydrobiologia 389: 73–88.

    Article  Google Scholar 

  • Benke, A. C, R. L. Henry III., D. M. Gillespie & R. J. Hunter, 1985. Importance of snag habitat for animal production in southeastern streams. Fisheries 10: 8–13.

    Article  Google Scholar 

  • Benke, A. C., G. E. Willeke, F. K. Parrish & D. L. Stites, 1981. Effects of urbanization on stream ecosystems. A-005-GA, Office of Water Research and Technology, U.S. Department of the Interior.

    Google Scholar 

  • Bundesanstalt für Geowissenschaften und Rohstoffe (Federal Agency of Geosciences and Raw Materials, Germany), 1993. Geologische Karte der Bundesrepublik Deutschland. Bundesan-stalt für Geowissenschaften und Rohstoffe, Hannover.

    Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analysis of changes in community structure. Aust. J. Ecol. 18: 117–143.

    Article  Google Scholar 

  • CSN 75 7221, 1998. Water Quality-Classification of Surface Water Quality. Czech Technical State Standard. Czech Standards Institute, Prague, 10 pp.

    Google Scholar 

  • Dahl, J., R. K. Johnson & L. Sandin, 2004. Detection of organic pollution of streams in southern Sweden using benthic macroinvertebrates. Hydrobiologia 516: 161–172.

    Article  CAS  Google Scholar 

  • Davies, N. M., R. H. Norris & M. C. Thomas, 2000. Prediction and assessment of local stream habitat features using large-scale catchment characteristics. Freshwat. Biol. 45: 343–369.

    Article  Google Scholar 

  • DEV (Deutsches Institut fur Normung e. V) (German Institute of Standardization), 1992. Biologisch-okologische Gewasserunter-suchung: Bestimmung des Saprobienindex (M2). In: Deutsche Einheitsverfahren zur Wasser-, Abwasser-und Schlammunter-suchung. VCH Verlagsgesellschaft, Weinheim, 13 pp.

    Google Scholar 

  • Dudley, T. & N. H. Anderson, 1982. A survey of invertebrates associated with wood debris in aquatic habitats. Melanderia 39: 1–21.

    Google Scholar 

  • Dufrene, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67(3): 345–366.

    Google Scholar 

  • Ellenberg, H., 1996. Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ulmer, Stuttgart, 1095 pp.

    Google Scholar 

  • EU commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, Brussels, 72 pp.

    Google Scholar 

  • Feld, C. K., E. Kiel & M. Lautenschläger, 2002. The indication of morphological degradation of streams and rivers using Simuliidae. Limnologica 32: 273–288.

    Article  Google Scholar 

  • Franquet, E., S. Dolédec & D. Chessel, 1995. Using multivariate analyses for separating spatial and temporal effects within species-environment relationship. Hydrobiologia 300/301: 425–431.

    Article  Google Scholar 

  • Frissell, C. A., W. J. Liss, C. E. Warren & M. D. Hurley, 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ. Manage. 10: 199–214.

    Article  Google Scholar 

  • Gurnell, A. M., K. J. Gregory & G. E. Petts, 1995. The role of coarse woody debris in forest aquatic habitats: implications for management. Aquat. Cons. Mar. Freshwat. Ecosyst: 143–166.

    Google Scholar 

  • Harmon, M. E., J. F. Franklin, F. J. Swanson, P. Sollins, S. V Gregory, J. D. Lattin, N. H. Anderson, S. P. Cline, N. G. Auman, J. R. Sedell, G. W. Lienkaemper, K. C. Jr. & K. W. Cummins, 1986. Ecology of coarse woody debris in temperate ecosystems. Adv. ecol. Res. 15: 133–302.

    Article  Google Scholar 

  • Hering, D. & M. Reich, 1997. Bedeutung von Totholz fur Morphologie, Besiedlung und Renaturierung mitteleuropaischer FlieBgewasser. Nat. Landsch. 72: 383–389.

    Google Scholar 

  • Hering, D., O. Moog, L. Sandin & P. F. M. Verdonschot, 2004. Overview and application of the AQEM assessment system. Hydrobiologia 516: 1–20.

    Article  Google Scholar 

  • Hering, D., A. Buffagni, O. Moog, L. Sandin, M. Sommerhaeuser, I. Stubauer, C. K. Feld, R. Johnson, P. Pinto, N. Skoulikidis, P. Verdonschot & S. Zahrádková, 2003. The development of a system to assess the ecological quality of streams based on macroinver-tebrates-design of the sampling programme within the AQEM project. Int. Rev. Hydrobiol. 88: 345–361.

    Article  Google Scholar 

  • Hildrew, A. G., 1996. Whole river ecology: spatial scale heterogeneity in the ecology of running waters. Arch. Hydrobiol., Suppl. 113 (Large Rivers 10): 25–43.

    Google Scholar 

  • HMULF (Regional Ministry of Environment, Agriculture and Forestry of Hassia, Germany) (ed.), 1999. Gewässerstrukturgute in Hessen 1999. Wiesbaden, 52 pp.

    Google Scholar 

  • Hoffmann, A. & D. Hering, 2000. Wood-associated macroinvertebrate fauna in Central European streams. Int. Rev. Hydrobiol. 85: 25–48.

    Article  Google Scholar 

  • Hughes, R. M., 1995. Defining acceptable biological status by comparing with reference conditions. In: Davis, W. S. & T. P. Simon (eds), Biological Assessment and Criteria. Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, 415 pp.

    Google Scholar 

  • lilies, J., 1978. Limnofauna Europaea. Gustav Fischer, Stuttgart, 532 pp.

    Google Scholar 

  • Jones, R. C. & C. C. Clark, 1987. Impact of watershed urbanization on stream insect communities. Water Resour. Bull. 23: 1047–1055.

    Article  CAS  Google Scholar 

  • LAWA (Federal State’s Working Group ‘Water’, Germany) (ed.), 2000. Gewässerstrukturgütekartierung in der Bundes-republik Deutschland-Verfahren für kleine und mittelgroβe Flieβgewässer. Kulturbuchverlag, Schwerin, 145 pp + appendices.

    Google Scholar 

  • Lorenz, A., D. Hering, C. K. Feld & P. Rolauffs, 2004. A new method for assessing the impact of hydromorphological degradation on the macroinvertebrate fauna of five German stream types. Hydrobiologia516: 107–127.

    Article  Google Scholar 

  • LUA NRW (Environmental Agency of North Rhine-Westphalia, Germany) (ed), 2001. Leitbilder fur die mittelgroβen bis groβen Flieβgewässer in Nordrhein-Westfalen-Flusstypen. LUA Merkbl. 34, Essen, 130 pp.

    Google Scholar 

  • LUA NRW (Environmental Agency of North Rhine-Westphalia, Germany) (ed), 2002. FlieBgewässertypenatlas Nordrhein-Westfalens, LUA Merkbl. 36, Essen, 61 pp.

    Google Scholar 

  • McCune, B. & M. J. Mefford, 1999. Multivariate Analysis of Ecological Data (PCOrd), Version 4.25. MjM Software, Gleneden Beach, Oregon, U.S.A.

    Google Scholar 

  • MUNLV/LUA NRW (Regional Ministry of Environment and Nature Protection, Agriculture and Consumer Affairs North Rhine-Westphalia & Regional Environmental Agency of North Rhine-Westphalia, Germany) (eds), 2000. Gewässergütebericht 2000–30 Jahre biologische Gewässeriiberwachung in Nordrhein-Westfalen. Dusseldorf, 346 pp.

    Google Scholar 

  • Mutz, M., 2000. Influence of woody debris on flow patterns and channel morphology in a low energy, sand-bed stream reach. Int. Rev. Hydrobiol. 85: 107–121.

    Article  Google Scholar 

  • Newbold, J. D., D. C. Erman & K. B. Roby, 1980. Effects of logging on macroinvertebrates in streams with and without buffer strips. Can. J. Fish, aquat. Sci. 37: 1076–1085.

    Article  Google Scholar 

  • Nijboer, R. C, R. K. Johnson, P. F. M. Verdonschot, M. Sommer-häuser & A. Buffagni, 2004. Establishing reference conditions for European streams. Hydrobiologia 516: 91–105.

    Article  Google Scholar 

  • NLÖ (Regional Agency of Ecology Lower Saxony, Germany) (ed.), 2000. Gewässergütebericht 2000. Hildesheim, 40 pp.

    Google Scholar 

  • Ofenbock, T., O. Moog, J. Gerritsen & M. Barbour, 2004. A stressor specific multimetric approach for monitoring running waters in Austria using benthic macro-invertebrates. Hydrobiologia 516: 251–268.

    Article  Google Scholar 

  • Omernik, J. M., 1987. Ecoregions of the conterminous United States (with map). Ann. Assoc, am. Geogr. 77: 118–125.

    Article  Google Scholar 

  • Pauls, S., C. K. Feld, M. Sommerhäuser & D. Hering, 2002. Neue Konzepte zur Bewertung von Tieflandbächen und-flüssen nach Vorgaben der EU Wasser-Rahmenrichtlinie. Wasser Boden 54: 70–77.

    Article  Google Scholar 

  • Podani, J., 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys Publishers, Leiden, 407 pp.

    Google Scholar 

  • Rabeni, C. F., 2000. Evaluating physical habitat integrity in relation to the biological potential of streams. Hydrobiologia 422/423: 245–256.

    Article  Google Scholar 

  • Raven, P. J., N. T. H. Holmes, P. Charrier, F. H. Dawson, M. Naura & P. J. Boon, 2002. Towards a harmonized approach for hydromorphological assessment of rivers in Europe: a qualitative comparison of three survey methods. Aquat. Cons. Mar. Freshwat. Ecosyst. 12: 405–124.

    Article  Google Scholar 

  • Raven, P. J., N. T. H. Holmes, F. H. Dawson & M. Everard, 1998. Quality assessment using river habitat survey data. Aquat. Cons. Mar. Freshwat. Ecosyst. 8: 477–499.

    Article  Google Scholar 

  • Raven, P. J., P. Fox, M. Everard, N. T. H. Holmes & F H. Dawson, 1997. River Habitat Survey: a new system for classifying rivers according to their habitat quality. In Boon, P. J. & D. L. Howell (eds), Freshwater Quality: Defining the Indefinable. Scottish Natural Heritage, Edinburgh: 215–234.

    Google Scholar 

  • Richards, C, L. B. Johnson & G. E. Host, 1996. Landscape-scale influences on stream habitats and biota. Can. J. Fish, aquat. Sci. 53(Suppl. 1): 295–311.

    Article  Google Scholar 

  • Rolauffs, P., I. Stubauer, Z. Zahrádková, K. Brabec & O. Moog, 2004. Integration of the saprobic system into the European Union Water Framework Directive. Hydrobiologia 516: 285–298.

    Article  Google Scholar 

  • Sponseller, R. A., E. F Benfield & H. M. Valett, 2001. Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwat. Biol. 46: 1409–1424.

    Article  Google Scholar 

  • Statistisches Bundesamt (Federal Agency of Statistics, Germany) (ed.), 1997. Daten zur Bodenbedeckung. Wiesbaden.

    Google Scholar 

  • Statzner, B., B. Bis, S. Doledec & P. Usseglio-Polatera, 2001. Perspectives for biomonitoring at large spatial scales: a unified measure for the functional composition of invertebrate communities in European running waters. Basic Appl. Ecol. 2: 73–85.

    Article  Google Scholar 

  • Tabacchi, E., D. L. Correll, R. Hauer, G. Pinay, A.-M. Planty-Tabacchi & R. C. Wissmar, 1998. Development, maintenance and role of riparian vegetation in the river landscape. Freshwat. Biol. 40:497–516.

    Article  Google Scholar 

  • Vlek, H. E., P. F. M. Verdonschot & R. C. Nijboer, 2004. Towards a multimetric index for the assessment of Dutch streams using benthic macroinvertebrates. Hydrobiologia 516: 173–189.

    Article  Google Scholar 

  • Whittier, T. R., R. M. Hughes & D. P. Larsen, 1988. Correspondence between ecoregions and spatial patterns in stream ecosystems in Oregon. Can. J. Fish, aquat. Sci. 45: 1264–1278.

    Article  Google Scholar 

  • Wiederholm, T. & R. K. Johnson, 1997. Monitoring and assessment of lakes and watercourses in Sweden. In Ottens, J. J., F A. M. Claessen, P. G. Stoks, J. G. Timmerman & R. C. Ward (eds), Monitoring Tailor-made II, Information Strategies in Water, Nunspeet, The Netherlands: 317–329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Feld, C.K. (2004). Identification and Measure of Hydromorphological Degradation in Central European Lowland Streams. In: Hering, D., Verdonschot, P.F.M., Moog, O., Sandin, L. (eds) Integrated Assessment of Running Waters in Europe. Developments in Hydrobiology, vol 175. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0993-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0993-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3761-7

  • Online ISBN: 978-94-007-0993-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics