Skip to main content

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 39))

Abstract

Remote sensing phenology is able to consistently generate estimates of the start, peak, duration, and end of the growing season over large areas. The elements of phenology that can be estimated from remote sensing are necessarily more coarse than direct observations of individual plant phenology, such as bud burst or first leaf, but are rather summaries of the constituents of pixels and do not normally represent any one vegetation type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References Cited

  • Asrar, G., M. Fuchs, E. T. Kanemasu, and J. L. Hatfield, Estimating absorbed photosynthetically active radiation and leaf area index from spectral reflectance in wheat, Agronomy Journal, 76, 300–306, 1984.

    Article  Google Scholar 

  • Badhwar, G. D., Crop emergence date determination from spectral data, Photogrammetric Engineering and Remote Sensing, 46, 369–377, 1980.

    Google Scholar 

  • Badhwar, G. D., Use of Landsat-derived profile features for spring small-grains classification, Int. J. Remote Sensing, 5(5), 783–797, 1984

    Article  Google Scholar 

  • Chen, X. Q., C. X. Xu, and Z. J. Tan, An analysis of relationships among plant community phenology and seasonal metrics of Normalized Difference Vegetation Index in the northern part of the monsoon region of China. Int. J. Biometeorol., 45, 170–177, 2001

    Article  PubMed  CAS  Google Scholar 

  • Coops, N. C., and R. H. Waring, Estimating forest productivity in the eastern Siskiyou Mountains of southwestern Oregon using a satellite driven process model, 3-PGS, Can. J. Forest Research (Revue Canadienne De Recherceh Forestiere), 31, 143–154, 2001a.

    Google Scholar 

  • Coops, N. C., R. H. Waring, The use of multiscale remote sensing imagery to derive regional estimates of forest growth capacity using 3-PGS, Remote Sensing Environ., 75, 324–334, 2001b

    Google Scholar 

  • Coops, N. C., R. H. Waring, and J. J. Landsberg, Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite derived estimates of canopy photosynthetic capacity, Forest Ecology and Management, 104, 113–127, 1998.

    Article  Google Scholar 

  • Coops, N. C., R. H. Waring, and J. J. Landsberg, Estimation of potential forest productivity across the Oregon transect using satellite data and monthly weather records, Int. J. Remote Sensing, 22, 3797–3812, 2001.

    Article  Google Scholar 

  • Crist, E. P., Cultural and environmental effects on the spectral development patterns of corn and soybeans — field data analysis, NASA Report SR-E2-04224, Environmental Research Institute of Michigan, Ann Arbor, Michigan, 67 pp., 1982.

    Google Scholar 

  • Crist, E. P., and W. A. Malila, Development and evaluation of an automatic labeling technique for spring small grains, NASA Report SR-EL-04065, AgRISTARS Report NAS9-15476, Environmental Research Institute of Michigan, Ann Arbor, Michigan, 67 pp., 1982.

    Google Scholar 

  • Duchemin B., J. Goubier, and G. Courrier, Monitoring phenological key stages and cycle duration of temperate deciduous forest ecosystems with NOAA/AVHRR data. Remote Sensing of Environ., 67, 68–82, 1999

    Article  Google Scholar 

  • Eidenshink, J., The 1990 Conterminous U.S. AVHRR data set, Photogrammetric Engineering and Remote Sensing, 58, 809–813, 1992.

    Google Scholar 

  • Friedlingstein, P., G. Joel, C. B. Field, and I. Y. Fung, Toward an allocation scheme for global terrestrial carbon models, Global Change Biology, 5, 755–770, 1999.

    Article  Google Scholar 

  • Goward, S. N., C. J. Tucker, and D. G. Dye, North American vegetation patterns observed with the NOAA-7 Advanced Very High Resolution Radiometer, Vegetatio, 64, 3–14, 1985.

    Article  Google Scholar 

  • Huete, A. R., A soil adjusted vegetation index (SAVI), Remote Sensing Environ., 25, 295–309, 1988.

    Article  Google Scholar 

  • Huete, A. R., H. Q. Liu, K. Batchily, and W. vanLeeuwen, A comparison of Vegetation indices over a global set of TM images for EOS-MODIS, Remote Sensing Environ., 59, 440–451, 1997.

    Article  Google Scholar 

  • Jönsson, P., and L. Eklundh. Seasonality extraction by function fitting to time-series of satellite sensor data, IEEE Transactions on Geoscience and Remote Sensing, 40, 1824–1832, 2002.

    Article  Google Scholar 

  • Kaduk, J., and M. Heimann, A prognostic phenology scheme for global terrestrial carbon cycle models, Clim. Res., 6, 1–19, 1996.

    Article  Google Scholar 

  • Kaufman, Y. J., and D. Tanré, Atmospherically resistant vegetation index (ARVI) for EOS-MODIS, IEEE Transactions Geosciences and Remote Sensing, 30, 2–27, 1992.

    Article  Google Scholar 

  • Keeling, C. D., J. F. S. Chin, and T. P. Whorf, Increased activity of northern vegetation inferred from atmospheric CO2 measurements, Nature, 382, 146–149, 1996.

    Article  CAS  Google Scholar 

  • Landsberg, J. J., and R. H. Waring, A generalized model of forest productivity using simplified concepts of radiation use efficiency, carbon balance and partitioning, Forest Ecology and Management, 95, 209–228, 1997.

    Article  Google Scholar 

  • Lloyd, D., A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery, International Journal of Remote Sensing, 11, 2269–2279, 1990.

    Article  Google Scholar 

  • Lobell, D. B., J. A. Hicke, G. P. Asner, C. B. Field, C. J. Tucker, and S. O. Los, Satellite estimates of productivity and light use efficiency in United States agriculture, 1982–98, Global Change Biology, 8, 722–735, 2002.

    Article  Google Scholar 

  • Loveland, T. R., J. W. Merchant, D. O. Ohlen, and J. F. Brown, Development of a land-cover characteristics database for the conterminous U.S., Photogrammetric Engineering and Remote Sensing, 57, 1453–1463, 1991.

    Google Scholar 

  • Los, S. O., C. O. Justice, and C. J. Tucker, A global 1° by 1° NDVI data set for climate studies derived from the GIMMS continental NDVI data, Int. J. Remote Sensing, 15, 3493–3518, 1994.

    Article  Google Scholar 

  • MacDonald, R. B., and F. G. Hall, Global crop forecasting, Science, 208, 670–679, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Malingreau, J. P., C. J. Tucker, and N. Laporte, AVHRR for monitoring global tropical deforestation, Int. J. Remote Sensing, 10, 855–867, 1989.

    Article  Google Scholar 

  • Meltzer, M. D., R. C. Cicone, and K. I. Johnson, The evaluation of a semi-automated procedure for classifying corn and soybeans without ground data, Proceeding of the Eighth Symposium on Machine Processing of Remotely Sensed Data, 7–9 July, West Lafayette Indiana, 108–115, 1982.

    Google Scholar 

  • Menzel, A., Phenology: Its importance to the global change community, Climatic Change, 54, 379–385, 2002.

    Article  Google Scholar 

  • Moulin, S., L. Kergoat, N. Viovy, and G. Dedieu, Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements, J. Climate, 10, 1154–1170, 1997.

    Article  Google Scholar 

  • Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani, Increased plant growth in the northern high latitudes from 1981 to 1991, Nature, 186, 695–702, 1997a.

    Google Scholar 

  • Myneni, R. B., R. R. Nemani, and S. W. Running, Estimation of global leaf area index and absorbed PAR using radiative transfer models, IEEE Transactions on Geoscience and Remote Sensing, 35, 1380–1393, 1997b.

    Google Scholar 

  • Potter, C. S., S. E. Alexander, J. C. Coughlan, and S. A. Klooster, Modeling biogenic emissions of isoprene: exploration of model drivers, climate control algorithms, and use of global satellite observations, Atmospheric Environment, 35, 6151–6165, 2001.

    Article  CAS  Google Scholar 

  • Potter, C. S., and S. A. Klooster, Detecting a terrestrial biosphere sink for carbon dioxide: Interannual ecosystem modeling for the mid-1980s, Climatic Change, 42, 489–503, 1999.

    Article  CAS  Google Scholar 

  • Potter, C. S., J. T. Randerson, C. B. Field, P. A. Matson, P. M. Vitousek, H. A. Mooney, and S. A. Klooster, Terrestrial ecosystem production: a process model based on global satellite and surface data, Global Biogeochemical Cycles, 7, 811–841, 1993.

    Article  Google Scholar 

  • Reed, B. C., J. F. Brown, D. VanderZee, T. R. Loveland, J. W. Merchant, and D. O. Ohlen, Measuring phenological variability from satellite imagery, J. Veg. Science, 5, 703–714, 1994.

    Article  Google Scholar 

  • Running, S. W., and J. C. Coughlan, A general model of forest ecosystem processes for regional application. I. Hydrological balance, canopy gas exchange and primary production processes, Ecol. Modelling, 42, 125–154, 1988.

    Article  CAS  Google Scholar 

  • Schwartz, M. D., and T. M. Crawford, Detecting energy balance modifications at the onset of spring, Phys. Geography, 5, 394–409, 2001.

    Google Scholar 

  • Schwartz, M. D., B. C. Reed, and M. A. White, Assessing satellite-derived start-of-season measures in the conterminous USA, Int. J. Climatology, 22, 1793–1805, 2002.

    Article  Google Scholar 

  • Swets, D. L., B. C. Reed, J. D. Rowland, and S. E. Marko, A weighted least-squares approach to temporal NDVI smoothing, Proceedings of the 1999 ASPRS Annual Conference, From Image to Information, Portland, Oregon, May 17–21, 1999 [CD-ROM], Bethesda, Maryland, American Society for Photogrammetry and Remote Sensing, 2000.

    Google Scholar 

  • Townshend, J. R. G., C. O. Justice, and D. Skole, The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme, Int. J. Remote Sensing, 15, 3417–3441, 1994.

    Article  Google Scholar 

  • Tucker, C. J., and P. J. Sellers, Satellite remote sensing of primary productivity, Int. J. Remote Sensing, 7, 1395–1416, 1986.

    Article  Google Scholar 

  • Tucker, C. J., D. A. Slayback, J. E. Pinzon, S. O. Los, R. B. Myneni, and M. G. Taylor, Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999, Int. J. Biometeorol., 45, 184–190, 2001.

    Article  PubMed  CAS  Google Scholar 

  • VanDijk, A., S. L. Callis, C. M. Sakamoto, and W. L. Decker, Smoothing vegetation index profiles: an alternative method for reducing radiometric disturbance in NOAA/AVHRR data, Photogrammetric Engineering and Remote Sensing, 53, 1059–1067, 1987.

    Google Scholar 

  • Viovy, N., O. Arino, and A. S. Belward, The best index slope extraction: A method for reducing noise in NDVI time series, Int. J. Remote Sensing, 13, 1585–1590, 1992.

    Article  Google Scholar 

  • Waring, R. H. J. J. Landsberg, and M. Williams, Net primary production of forests: a constant fraction of gross primary production?, Tree Phiology, 18, 129–134, 1998.

    Google Scholar 

  • White, M. A., M. D. Schwartz, and S. W. Running, Young students, satellites aid understanding of climate-biosphere link, EOS Transactions, 81, 1,5, 1999.

    Article  Google Scholar 

  • White, M. A., P. E. Thornton, and S. W. Running, A continental phenology model for monitoring vegetation responses to interannual climatic variability, Global Biogeochemical Cycles, 11, 217–234, 1997.

    Article  CAS  Google Scholar 

  • Wiegand, C. L., A. J. Richardson, and E.T. Kanemasu, Leaf area index estimates for wheat from Landsat and their implications for evapotranspiration and crop modeling, Agronomy Journal, 71, 336, 1979.

    Article  Google Scholar 

  • Zhang, X., J. C. F. Hodges, C. B. Schaaf, M. A. Friedl, A. H. Strahler, and F. Gao, Global vegetation phenology from AVHRR and MODIS data. Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, Australia, [CD-ROM], 2001.

    Google Scholar 

  • Zhang, X., M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. F. Hodges, F. Gao, and B. C. Reed, Monitoring vegetation phenology using remotely sensed data from MODIS. Remote Sensing of Environ., 84, 471–475, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Reed, B.C., White, M., Brown, J.F. (2003). Remote Sensing Phenology. In: Schwartz, M.D. (eds) Phenology: An Integrative Environmental Science. Tasks for Vegetation Science, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0632-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0632-3_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1580-9

  • Online ISBN: 978-94-007-0632-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics