Skip to main content

Recovery from Eutrophication

  • Chapter
Freshwater Management

Abstract

Many lakes world-wide suffer from eutrophication as a result of high external nutrient inputs from domestic sewage, industry and agricultural activities. Increased demands for water by a growing and developing human population as well as enhanced global warming may escalate the eutrophication on a global scale in the next century. Yet, in some countries large efforts are now being made to combat eutrophication by reducing the phosphorus input. Some lakes respond rapidly to such loading reductions, while others are highly resistant due to high internal phosphorus loading (chemical resistance) or homeostatic effects of the food web altered by eutrophication (biological resistance). Some general models have been developed for the response of lakes to reduced loading, but major advances within this field can be expected in the future when more case studies appear. While these models may be used as a core for evaluating response patterns, local factors should always be considered to avoid wrong and often expensive decisions. To precipitate recovery from chemical and biological resistance, several physico-chemical and biological restoration methods have been developed. The biological methods include removal of planktivorous and benthivorous fish, stocking of piscivorous fish, protection or planting of submerged macrophytes, introduction of artificial structures, or addition of mussels. A widely applied method is removal of planktivorous and benthivorous fish. In many cases such efforts have yielded major improvements in water quality and the ecological state of the lakes. Yet, the listed restoration methods have mainly been applied to northern temperate lakes and cannot readily be transferred to subtropical and tropical lakes where the eutrophication-related problems are going to be greatest in the future. There is thus a major need for development and adaptation of methods focusing on south temperate, subtropical and tropical lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersson, A., H. Berggren, and G. Cronberg. 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15

    Article  CAS  Google Scholar 

  • Anneville, O., and J. P. Pelletier. 2000. Recovery of Lake Geneva from eutrophication: quantitative response of phytoplankton. Arch. Hydrobiol. 148: 607–624

    CAS  Google Scholar 

  • Beklioglu, M., L. Carvalho, and B. Moss. 1999. Rapid recovery of a shallow hypertrophic lake following sewage effluent diversion: lack of chemical resilience. Hydrobiologia 412: 5–15

    Article  CAS  Google Scholar 

  • Benndorf, J. 1995. Possibilities and limits for controlling eutrophication by biomanipulation. hit. Rev. Ges. Hydrobiol. 80: 519–534

    Article  CAS  Google Scholar 

  • Berg, S., E. Jeppesen, and M. Sondergaard. 1997. Pike (Esox luciusL.) stocking as a biomanipulation tool. 1: Effects on the fish population in Lake Lyng (Denmark). Hydrobiologia 342/343: 311–318

    Google Scholar 

  • Bernhardt, von H., J. Clasen, O. Hover, and W. Wilhelms. 1985. Oligotrophication in lakes by means of chemical nutrient removal from the tributaries. Its demonstration with the Wahnbach Reservoir. Arch. Hydrobiol. Suppl. 70: 481–533

    CAS  Google Scholar 

  • Brabrand, A., B. Faafeng, and J. P. Nilssen. 1990. Relative importance of phosphorus supply to phytoplankton production: fish excretion versus external loading. Can. J. Fish. Aquat. Sci. 47: 364–372

    Article  Google Scholar 

  • Breukelaar, A.W., E. H. R. R. Lammens, J. P. G. Klein Breteler, and I. Tatrai. 1994. Effects of benthivorous bream (Abramis bramaL.) and carp (Cyprinus caprioL.) on sediment resuspension and concentration of nutrients and chlorophyll a. Freshwat. Biol. 32: 113–121

    Google Scholar 

  • Brooks, J. L., and S. I. Dodson. 1965. Predation, body size and composition of plankton. Science 150: 28–35

    Article  CAS  Google Scholar 

  • Bauerle, E., and U. Gaedke, 1998. Advances in Limnology 53. Lake Constance: Characterization of an ecosytem in transition. E. Schweizerbart’sche Verlagsbuchhandlung, 610 p

    Google Scholar 

  • Choulik, O., and T. R. Moore. 1992. Response of a subarctic lake chain to reduced sewage loading. Can. J. Fish. Aquat. Sci. 49: 1236–1245

    Article  Google Scholar 

  • Cooke, G. D., E. B. Welch, S. A. Peterson, and P. R. Newroth. 1993. Restoration and management of lakes and reservoirs, Boca Raton, Florida: Lewis Publishers

    Google Scholar 

  • Cronberg, G. 1999. Qualitative and quantitative investigations of phytoplankton in Lake Ringsjön, Scania, Sweden. Hydrobiologia 404: 27–40

    Article  Google Scholar 

  • Degerman, E., J. Hammar, P. Nyberg, and G. Svärdson. 2001. Human impact on the fish density in four largest lakes of Sweden. Ambio. 30: 522–528

    CAS  Google Scholar 

  • Dumont, H. J. 1994. On the diveristy of the Cladocera in the tropics. Hydrobiologia 272: 27–38

    Article  Google Scholar 

  • Eckmann, R., and R. Rösch. 1998. Lake Constance fisheries and fish ecology. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 53: 285–301

    Google Scholar 

  • Edmondson, W. T., and J. T. Lehman. 1981. The effect of changes in the nutrient income on the condition of Lake Washington. Limnol. Oceanogr. 26: 1–29

    Google Scholar 

  • Fernando, C. H. 1994. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia 272: 105–123

    Article  Google Scholar 

  • Gaedke, U. 1998. The response of the pelagic food web to re-oligotrophication of a large and deep lake (L. Constance): Evidence for scale-dependent hierarchical patterns ? Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 53: 317–333

    Google Scholar 

  • Güde, H., H. Rossknecht, and G. Wagner. 1998. Anthropogenic impacts on the trophic state of Lake Constance during the 20th century. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 53: 85–108

    Google Scholar 

  • Hanson, J. M., and W. C. Leggett. 1982. Empirical prediction of fish biomass and weight. Can. J. Fish. Aquat. Sci. 39: 257–263

    Article  Google Scholar 

  • Hanson, J. M., W. C. Leggett., and R. H. Peters. 1984. Empirical prediction of crustacean zooplankton biomass and profundal macrobenthos biomass in lakes. Can. J. Fish. Aquat. Sci. 41: 439–445

    Article  CAS  Google Scholar 

  • Hansson, L-A., H. Annadotter, E. Bergman, S. F. Hamrin, E. Jeppesen, T. Kairesalo, E. Luokkanen, P-A. Nilsson, M. SgndergaA.R.D., and J. Strand. 1998. Biomanipulation as an application of food chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosystems 1: 558–574

    Google Scholar 

  • Horppila, J., H. Peltonen, T. Malinen, E. Luokkanen, and T. Kairesalo. 1998. Top-down or bottom-up effects by fish — issues of concern in biomanipulation op lakes. Restor. Ecol. 6: 1–10

    Google Scholar 

  • Howard-Williams, C., and D. Kelly. 2003. Recovery from eutrophication: Local perspectives in lake restoration and rehabilitation, Chapter 5–2. InM. Kumagai and W. F. Vincent [eds.], Freshwater Management: Global Versus Local Perspectives. Springer-Verlag, Tokyo, this volume

    Google Scholar 

  • Hrbacek, J., V. Dvorakova, V. Korinekand, and L. Prochazkova. 1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Verh. Internat. Verein. Limnol. 14: 192–195

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Sondergaard, T. Lauridsen, L. J. Pedersen, and L. Jensen. 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343: 151–164

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Sondergaard, T. Lauridsen, L. J. Pedersen, and L. Jensen., P. H. Moller, and K. Sandby. 1998. Changes in nitrogen retention in shallow eutrophic lakes following a decline in density of cyprinids. Arch. Hydrobiol. 142: 129–151

    CAS  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Sondergaard, T. Lauridsen, L. J. Pedersen, and L. Jensen., P. H. Moller, and K. Sandby, M. Sondergaard, J. P. Jensen, E. Mortensen, A.-M. Hansenand T. Jrgensen. 1998. Cascading trophic interactions from fish to bacteria and nutrients after reduced sewage loading: an 18-year study of a shallow eutrophic lake. Ecosystems 1: 250–267

    Article  CAS  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Sondergaard, T. Lauridsen, L. J. Pedersen, and L. Jensen., P. H. Moller, and K. Sandby, M. Sondergaard, J. P. Jensen, E. Mortensen, A.-M. Hansen and T. Jrgensen, J. P. Jensen, M. Sondergaard, and T. Lauridsen. 1999. Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity. Hydrobiologia 408/409: 217–231

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Sondergaard, T. Lauridsen, L. J. Pedersen, and L. Jensen., P. H. Moller, and K. Sandby, M. Sondergaard, J. P. Jensen, E. Mortensen, A.-M. Hansen and T. Jrgensen, and F. Landkildehus. 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwat. Biol. 45: 201–213

    CAS  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Sondergaard, T. Lauridsen, L. J. Pedersen, and L. Jensen., P. H. Moller, and K. Sandby, M. Sondergaard, J. P. Jensen, E. Mortensen, A.-M. Hansen and T. Jrgensen, and. 2002. Response of phytoplankton, zooplankton and fish to re-oligotrophication: an 11-year study of 23 Danish lakes. Aquat. Ecosys. Health & Managm. 5: 31–43

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Sondergaard, T. Lauridsen, L. J. Pedersen, and L. Jensen., P. H. Moller, and K. Sandby, M. Sondergaard, J. P. Jensen, E. Mortensen, A.-M. Hansenand T. Jrgensen, and I. Sammalkorpi, 2002. Lakes, Chapter 14, p. 297–324. In M. Perrow and T. Davy [eds.], Handbook of Restoration Ecology. Cambridge University Press

    Google Scholar 

  • Kohler, J., H. Bernhardt, and S. Hoeg. 2000. Long-term response of phytoplankton to reduced nutrient load in the flusehd Lake Müggelsee (Spree system, Germany). Arch. Hydrobiol. 148: 209–229

    Google Scholar 

  • Kummerlin, R. E. 1998. Taxonomical response of the phytoplankton community of Upper Lake Constance (Bodensee-Obersee) to eutrophication and re-oligotrophication. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 53: 109–117

    Google Scholar 

  • Lathrop, R. C. 1990. Response of Lake Mendota (Wisconsin, U.S.A.) to decreased phosphorus loadings and the effect on downstream lakes. Ver. Int. Verein. Limnol. 24: 457–463

    Google Scholar 

  • Lauridsen, T., E. Jeppesen, and F.O. Andersen. 1993. Colonization of submerged macrophytes in shallow fish manipulated Lake Væng: Impact of sediment composition and birds grazing. Aquat. Bot. 46: 1–15

    Google Scholar 

  • Lazarro, X. 1997. Do the trophic cascade hypothesis and classical biomanipulation approaches apply to tropical lakes and reservoirs ? Ver. Int. Verein. Limnol. 26: 719–730

    Google Scholar 

  • Lowe, E. F., L. E. Battoe, M. F. Coveny, C. L. Schelske, K. E. Havens, E. R. Marzolf, and K. R. Reddy. 2001. The restoration of Lake Apopka in relation to alternative stable states: an alternative view to that of Bachmann et al. (1999). Hydrobiologia 448: 11–18

    Article  CAS  Google Scholar 

  • Marsden, S. 1989. Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshw. Biol. 21: 139–162

    CAS  Google Scholar 

  • Meijer, M.-L., I. de Boots, M. Scheffer, R. Portielje, and H. Hosper. 1999. Biomanipulation in shallow lakes in the Netherlands: an evaluation of 18 case studies. Hydrobiologia 408/409: 13–30

    Google Scholar 

  • Mitchell, S. F., and M. R. Perrow. 1997. Interactions between grazing birds and macrophytes, p. 175–196. InE. Jeppesen, Ma. Sondergaard, Mo. Sondergaard and K. Christoffersen [eds.], The structuring role of submerged macrophytes in lakes. Ecological Studies, Vol. 131. Springer Verlag, New York

    Google Scholar 

  • Moss, B. 1998. Shallow lakes: biomanipulation and eutrophication. Scope Newsletter 29, 45 p

    Google Scholar 

  • Muller, R., and H. J. Meng. 1992. Past and present state of the ichthyofauna of Lake Lugano. Aquat. Sci. 54: 338–350

    Google Scholar 

  • Oecd. 1982. Eutrophication of waters. Monitoring, assessments and control. OECD, Paris. 210 p

    Google Scholar 

  • Olsen, P., and E. Willen. 1980. Phytoplankton response to sewage reduction in Vättern, a large oligotrophic lake in Central Sweden. Arch. Hydrobiol. 89: 171–188

    CAS  Google Scholar 

  • Perrow, M. P., M-L. Meijer, P. Dawidowicz, and H. Coops. 1997. Biomanipulation in shallow lakes: state of the art. Hydrobiologia 342/343: 355–363

    Google Scholar 

  • Polli, B., and M. Simona. 1992. Qualitative and quantitative aspects of the evolution of the planktonic populations in Lake Lugano. Aqat. Sci. 54: 303–320

    Google Scholar 

  • Prejs, A., A. Martyniak, S. BORON, P. Hliwa, and P. Koperski. 1994. Food web manipulation in small, eutrophic Lake Wirbel, Poland: effect of stocking with juvenile pike on planktivorous fish. Hydrobiologia 275/276: 65–70

    Google Scholar 

  • Reynolds, C. F. 1984. The ecology of freshwater phytoplankton. Cambridge University Press. Cambridge, 384 p

    Google Scholar 

  • Ruggio, D., G. Morabito, P. Panzani, and A. Pugnetti. 1998. Trends and relations among basic phytoplankton characteristics in the course of the long-term oligotrophication of Lake Maggiore (Italy). Hydrobiologia 370: 243–257

    Article  Google Scholar 

  • Sas, H., 1989. Lake restoration by reduction of nutrient loading. Expectation, experiences, extrapolation. Acad. Ver. Richardz Gmbh. 409: 115–122

    Google Scholar 

  • Skov, C., and S. Berg. 1999. Utilisation of natural and artificial habitats by YOY pike in a biomanipulated lake. Hydrobiologia 408/409: 115–122

    Google Scholar 

  • Straile, D., and W. Geller. 1998. Crustacean zooplankton in Lake Constance from 1920 to 1995: Response to eutrophication and re-oligotrophication. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 53: 255–274

    Google Scholar 

  • Sondergaard, M., L. Olufsen, T. Lauridsen, E. Jeppesen, and T. V. Madsen. 1996. The impact of grazing waterfowl on submerged macrophytes: in situ experiments in a shallow eutrophic lake. Aquat. Bot. 53: 73–84

    Google Scholar 

  • Sondergaard, M., L. Olufsen, T. Lauridsen, E. Jeppesen, and T. V. Madsen, J. P. Jensen, and E. Jeppesen. 1999. Internal phosphorus loading in shallow Danish lakes. Hydrobiologia 408/409: 145–152

    Google Scholar 

  • Sondergaard, M., L. Olufsen, T. Lauridsen, E. Jeppesen, and T. V. Madsen, and. 2001. Retention and internal loading of phosphorus in shallow, eutrophic lakes. The Scientific World 1: 427–442

    Article  CAS  Google Scholar 

  • Sondergaard, M., L. Olufsen, T. Lauridsen, E. Jeppesen, and T. V. Madsen, E. Jeppesen, and P. H. Moller. 2002. Seasonal dynamics in the concentrations and retention of phosphorus in shallow Danish lakes during recovery. Aquat. Health Managm. 5: 19–29

    CAS  Google Scholar 

  • Sondergaard, M., L. Olufsen, T. Lauridsen, E. Jeppesen, and T. V. Madsen, E. Jeppesen, and P. H. Moller. UN. 1998. World population prospects: The 1996 revision. United Nations Secretariat, Department of Economic and Social Affairs, Population Division. Volume 1, 614 pp

    Google Scholar 

  • Vollenweider, R. A. 1976. Advance in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. Ital. ldrobiol. 33: 53–83

    CAS  Google Scholar 

  • Wetzel, R. G. 1990. Land-water interfaces: metabolic and limnological regulators. Verh. Int. Verein. Limnol. 24: 6–24

    Google Scholar 

  • Willen, E. 1984. The large lakes of Sweden, Vänern, Vättern, Mälaren and Hjälmaren, p. 107134. InF. B. Taub [ed.], Ecosystems of the World 23. Lakes and Reservoirs. Elsevier. 2001. Four decades of research on the Swedish large Lakes Mälaren, Hjälmaran

    Google Scholar 

  • Willen, E. 1984. Vättern and Värnern: the significance of monitoring and remedial measures for a sustainable society. Ambio 30: 458–466

    Google Scholar 

  • Wojciechowski, I., W. Wojciechowska, K. Czernas, J. Galek, and K. Religa. 1988. Changes in phytoplankton over a ten-year period in a lake undergoing de-eutrophication due to surrounding peat bogs. Arch. Hydrobiol. Suppl. 78: 373–387

    Google Scholar 

  • Burns, C. W., 1991. New Zealand Lakes Research, 1967–91 N. Z. J. Mar. and Fresh. Res. 25: 359–379

    Article  CAS  Google Scholar 

  • Burns, C. W., 1992. Population dynamics of crustacean zooplankton in a mesotrophic lake, with emphasis on Boeckella hamataBrehm (Copepodoa:Calanoida). Internat. Rev. der ges. Hydrob. 77: 553–577

    Article  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, and K. L. Cottingham. 1987. Regulation of lake primary productivity by food-web structure. Ecology 68: 1863–1876

    Article  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, and K. L. Cottingham., and K. L. Cottingham. 1997 Resilience and restoration in lakes. Cons. Ecol.Online 1 (1): 1–18

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, and K. L. Cottingham., D. Bolgrien, R. C. Lathrop, C. A. Stow, T. Reed, and M. A. Wilson 1998. Ecological and economic analyses of lake eutrophication by non-point pollution. Aust. J. Ecol. 23: 68–79

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, and K. L. Cottingham. and R. C. Lathrop. 1999. Lake Restoration: capabilities and needs. InD. M. Harper, B. Brierley, A. J. D. Ferguson and G. Phillips [eds.], The Ecological Bases for Lake and Reservoir Management. Hydrobiologia 395 /396: 19–28

    Google Scholar 

  • Chapman, M. A., J. D. Green, and V. H. Jolly. 1985. Relationships between zooplankton abundance and trophic state of seven New Zealand lakes. Hydrobiologia 123: 119–136

    Article  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, and K. L. Cottingham., and J. D. Green. 1987. Zooplankton Ecology. p. 225–263. InA. B. Viner [ed.], Inland Waters of New Zealand. DSIR Science Information Publishing Center, Wellington, New Zealand

    Google Scholar 

  • Collier, K., A. B. Cooper, R. J. Davies-Colley, J. C. Rutherford, C. M. Smith, and R. B. Williamson. 1995. Managing Riparian Zones: A contribution to protecting New Zealand streams. Volume 2: Guidelines. Department of Conservation, Wellington, NZ, 142 p

    Google Scholar 

  • Crowl, T. A., C. R. Townsend, and A. R. Mcintosh. 1992. The impact of introduced brown and rainbow trout on native fish: the case of Australasia. Rev. Fish Biol. Fish 2: 21724

    Article  Google Scholar 

  • Demelo, R., R. France, and D. J. Mcqueen. 1992. Biomanipulation: Hit or myth? Limnol. Oceanogr. 37: 192–207

    Google Scholar 

  • Devito, K. J., I. F. Creed, R. L. Rothwell, and E. E. Prepas. 2000. Landscape controls on phosphorus loading to boreal lakes: impliucations for potential impacts of forest harvesting. Can. J. Fish. Aquat. Sci. 57: 1977–1984

    Article  CAS  Google Scholar 

  • Dillon, P. J. and F. H. Rigler. 1974. A test of a simple nutrient budget model predicting the phosphorus concentration in lake water. J. Fish. Res. Board Can. 31: 1771–1778

    Article  CAS  Google Scholar 

  • Downes, M. T., C. Howard-Williams and L. Schippper. 1997. Long and short roads to riparian zone restoration: nitrate removal efficiency p. 244–253. InN. E. Haycock, T. P. Burt, K. W. T. Goulding and B. Pinay [eds.], Buffer Zones: Their processes and Potential in Water Protection. Quest Environmental Publishers, Harpendon U.K

    Google Scholar 

  • Frankenberg, R. 1974. Native freshwater fish. p. 113–170. In W. D. Williams [ed.], Biogeography and Ecology in Tasmania. Dr. W. Junk Publishers, The Hague, Netherlands

    Google Scholar 

  • Forsyth, D. J., and M. Lewis. 1987. Zoogeography: The invertebrates. p. 265–290. InA. B. Viner [ed.], Inland Waters of New Zealand. DSIR Science Information Publishing Center, Wellington

    Google Scholar 

  • Gibbs, M. M., and F. E. Matheson. 2001. Lake-edge wetlands and their importance to the Rotorua lakes, p. 99–106. In Proceedings and report on a symposium on Research Needs of the Rotorua Lakes, Lakes Water Quality Society, Rotorua, New Zealand.

    Google Scholar 

  • Goldman, C. R., and A. J. Horne. 1983. Limnology. McGraw-Hill, New York

    Google Scholar 

  • Golterman, H. L. 1975. Physiological Limnology: An approach to the physiology of lake ecosystems. Elsevier Scientific Publishing Co. Amsterdam, 489 p

    Google Scholar 

  • Green, J. 1976. Population dynamics and production of the calanoid copepod Calamoecia lucasi ina northern New Zealand lake. Archiv fur Hydrobiol., Supplement 50: 313400

    Google Scholar 

  • Harper, D. M., B. Brierley, A. J. D. Ferguson, and G. Phillips, G. [eds.], 1999. The Ecological Bases for Lake and Reservoir Management. Hydrobiologia 395/396: 469p.

    Google Scholar 

  • Hawes, I., and R. Smith. 1993. Effect of localised nutrient enrichment on the shallow epilithic periphyton of oligotrophic Lake Taupo, N.w Zealand. N. Z. J. Mar. and Fresh. Res. 27: 365–372

    Article  CAS  Google Scholar 

  • Howard-Williams, C. 1986. Studies on the ability of a Potamogeton pectianatuscommunity to remove dissolved nitrogen and phosphorus compounds from lake water. J. Applied Ecol. 18: 619–637

    Article  Google Scholar 

  • Howard-Williams, C. S. Clayton, B. T. Coffey, and I. M. Johnnstone. 1987. Macrophyte invasions, p. 307–331. InA. B. Viner [ed.], Inland Waters of New Zealand. DSIR Science Information Publishing Center, Wellington

    Google Scholar 

  • Howard-Williams, C., A-M. Schwarz, and V. Reid. 1996. Patterns of aquatic weed regrowth following mechanical harvesting in New Zealand hydro-lakes. Hydrobiologia 340: 229–234

    Article  Google Scholar 

  • Hosper, S. H. 1998. Stable states, buffers and switches: an ecosystem approach to the restoration and management of shallow lakes in the Netherlands. Wat. Sci. Tech. 3: 151–164

    Google Scholar 

  • Irvine, K., B. Moss, and H. Balls. 1989. The loss of submerged plants with eutrophication II. Relationships between fish and zooplankton in a set of experimental ponds, and conclusions. Fresh. Biol. 22: 89–107

    Google Scholar 

  • Jackson, P. D. 1981. Trout introduced into south-eastern Australia: their interaction with native fishes. Vict. Natural. 98: 18–24

    Google Scholar 

  • James, M. R., I. Hawes, M. Weatherhead, C. Stanger, and M. Gibbs. 2001. Carbon flow in the littoral food web of an oligotrophic lake. Hydrobiologia 441: 93–106

    Article  Google Scholar 

  • Jeppesen, E., M. Sondergaard, E. Mortensen, P. Kristensen, B. Riemann, H. J. Jensen, J. P. Moller, O. Sortkjaer, J. P. Jensen, K. Christoffersen, S. Bosselmann, and S. Dall. 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic temperate lakes. 1. Cross-analysis of three Danish case-studies. Hydrobiologia 200/201: 205–218

    Google Scholar 

  • Jeppesen, E., M. Sondergaard, E. Mortensen, P. Kristensen, B. Riemann, H. J. Jensen, J. P. Moller, O. Sortkjaer, J. P. Jensen, K. Christoffersen, S. Bosselmann, and S. Dall., J. P. Jensen, M. Sondergaard, T. Lauridsen, L. Junge, and L. Jensen. 1997a. Top-down control in fresh-water lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343: 151–164

    Google Scholar 

  • T. Lauridsen, S. F. Mitchell, and C. W. Burns. 1997b. Do planktivorous fish structure the zooplankton communities in New Zealand lakes. N. Z. J. of Mar. and Fresh. Res. 31: 163–173

    Article  Google Scholar 

  • T. Lauridsen, S. F. Mitchell, and C. W. Burns., T. L. Lauridsen, S. F. Mitchell, K. Christoffersen, and C. W. Burns2000. Trophic structure and the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. J. Plank. Res. 22: 951–968

    Article  Google Scholar 

  • T. Lauridsen, S. F. Mitchell, and C. W. Burns., M. Sondergaard, B. Krongvang, J. P. Jensen, L. M. Svendsen, and T. L.Lauridsen. 1999. Lake and catchment management in Denmark. Hydrobiologia 395/396: 419–432

    Google Scholar 

  • T. Lauridsen, S. F. Mitchell, and C. W. Burns., Jin, X. 1994. An analysis of lake eutrophication in China. Mitt. Internat. Verein. Limnol. 24: 207–211

    Google Scholar 

  • John, P. H., M. M. Gibbs, and M. T. Downes. 1978. Groundwater quality along the eastern shores of Lake Taupo 1975–1976. N. Z. J. of Mar. and Fresh. Res. 12: 59–66

    Article  CAS  Google Scholar 

  • Klinge, M., M. P. Grimm, and S. H. Hosper. 1995. Eutrophication and ecological rehabilitation of Dutch lakes: presentation of a new conceptual framework. Wat. Sci. Tech. 8: 207–218

    Google Scholar 

  • Krantz, T. K., K. E. Webster, C. J. Bowser, J. J. Magnuson, and B. J. Benson. 1997. The influence of landscape position on lakes in northern Wisconsin. Fresh. Biol. 37: 209–217

    Google Scholar 

  • Lagler, K. F. 1952. Freshwater Fishery Biology. Wm. C. Brown Company Publishers, Dobuque, Iowa, USA. p. 19–61

    Google Scholar 

  • Mcdowall, R. M. 1987. Impacts of exotic fishes on native fauna. P. 291–306. InA. B. Viner [ed.], Inland Waters of New Zealand. DSIR Science Information Publishing Center, Wellington

    Google Scholar 

  • Mcdowall, R. M., 1990. Filling in the gaps — the introduction of exotic fishes into New Zealand. p. 68–92. InD. A. Pollard [ed.], Introduced and Translocated Fishes and their Ecological Effects. Proceedings of the 8th Australian Society for Fish Biology Workshop, Magnetic Island, 24–25 August 1989

    Google Scholar 

  • Mcdowall, R. M.. 2000. The Reed Field Guide to New Zealand Freshwater Fishes. Reed Publishing, Auckland. 224 p

    Google Scholar 

  • Macchi, P. J., V. E. Cussac, M. F. Alonso, and M. A. Denegri. 1999. Predation relationships between introduced salmonids and the native fish fauna in lakes and reservoirs in northern Patagonia. Ecol. Fresh. Fish 8: 227–236

    Google Scholar 

  • Mcqueen, D. J., M. R. S. Johannes, J. R. Post, T. J. Stewart, and D. R. S. Lean. 1989. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecol. Monog. 59: 289–309

    Article  Google Scholar 

  • Mcqueen, D. J., M. R. S. Johannes, J. R. Post, T. J. Stewart, and D. R. S. Lean., 1998. Freshwater food web biomanipulation: A powerful tool for water quality improvement, but maintenance is required. Lakes and Reservoirs: Res. and Manage. 3: 83–94

    Article  Google Scholar 

  • Madgwick, F. J. 1999. Restoring nutrient-enriched shallow lakes: integration of theory and practice in the Norfolk Broads, U.K. Hydrobiologia 408/409: 1–12

    Google Scholar 

  • Meijer, M-L. E. Jeppesen, E. van Donk, B. Moss, M. Scheffer, E. Lammens, E. van Nes, J. A. Berkum, G. J. de Jong, B. A. Faafeeng, andJ. P. Jensen. 1994. Long-term responses to fish stock reduction in small shallow lakes: Interpretation of five year results of four bio-manipulation cases in the Netherlands and Denmark. Hydrobiologia 275/276: 457–466

    Google Scholar 

  • Moss, B., L. Carvalho, and J. Plewes. 2002. A lake at Llandrindod Wells — a restoration comedy ? Aquat. Cons. Mar. and Fresh. Syst. 12: 229–245

    Article  Google Scholar 

  • Nurnberg, G. K. 1984. The prediction of internal phosphorus load in lakes with anoxic hypolimnia. Limnol. Oceanogr. 29: 111–124

    CAS  Google Scholar 

  • OECD. 1982. Eutrophication of waters — monitoring, assessment and control. OECD, Paris. 154

    Google Scholar 

  • OECD. 1982. Eutrophication of waters — monitoring, assessment and control. OECD, Paris. 154 p.

    Google Scholar 

  • Ohle, W. 1982. Nährstoffzufuhren des Grebiner Sees durch atmosphärische Niederschläge und Oberflächenabschwemmung des Einzuigsgebietes. Arch Hydrobiol. 95: 331–363

    CAS  Google Scholar 

  • Padisak, J., and C. S. Reynolds. 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with sprcial reference to the cyanoprokaryotes. Hydrobiologia 384: 41–53

    Google Scholar 

  • Parker, J. F., and S. C. Maberley. 2000. Biological response to lake remediation by phosphate stripping:control of Cladophora. Fresh. Biol. 44: 303–309

    CAS  Google Scholar 

  • Phillips, G., A. Bramwell, J. Pitt, J. Stansfield, and M. Perrow. 1999. Practical application of 25 years’ research into the management of shallow lakes. Hydrobiologia 396/396: 61–76

    Google Scholar 

  • Portielje, R., and D. T. van der Molen. 1999. Relationships between eutrophication variables: from nutrient loading to transparency. Hydrobiologia 408/409: 375–387

    Google Scholar 

  • Sakamoto, M. 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on depth. Arch. Hydrobiol. 62: 1–28

    Google Scholar 

  • Sondergaard, M., E. Jeppesen, and J. P. Jensen. 2000. Hypolimnetic treatment to reduce internal phosphorus loading to a stratified lake. Lake and Reser. Manage. 16: 195–204

    Google Scholar 

  • Soto, D., and L. Zuniga. 1991. Zooplankton assemblages of Chilean temperate lakes: A comparison with North American counterparts. Revista Chilena de Historia Natural 64: 569–581

    Google Scholar 

  • Vant, B., and B. Huser., 2000. Effects of intensifying land-use on the water quality of Lake Taupo. Proc. N. Z. Soc. of Anim. Prod. 60: 261–264

    Google Scholar 

  • Vant, B., and B. Huser., 1987a. Eutrophication: An overview. In W. N. Vant [ed.], Lake Managers Handbook. National Water and Soil Conservation Authority, Wellington. Wat. and Soil Misc. Pub. 103: 151–157.

    Google Scholar 

  • Vant, B., and B. Huser., 1987 b. Lake Managers Handbook. National Water and Soil Conservation Authority, Wellington. Wat. and Soil Misc. Pub. 103: 230p.

    Google Scholar 

  • Vant, B., and B. Huser., and B. W. Gilliland 1991. Changes in water quality in Lake Horowhenua following sewage diversion. N. Z. J. Mar. Fresh. Res. 25: 57–61

    Article  CAS  Google Scholar 

  • Vant, B., and B. Huser., and R. A. Hoare. 1987. Determining the input rates of plant nutrients In W. N. Vant [ed.], Lake Managers Handbook. National Water and Soil Conservation Authority, Wellington. Wat. and Soil Misc. Publ. 103: 151–157.

    Google Scholar 

  • van Donk, E., and R. D. Gelati. 1989. Biomanipulation in the Netherlands. Proceedings of a symposium. Hydrobiol. Bull. 23: 1–99

    Google Scholar 

  • Varis, O. 1993. Cyanobacteria dynamics in a restored Finnish Lake: Long term simulation study. Hydrobiologia 268: 129–145

    Article  CAS  Google Scholar 

  • Vincent, W. F. 1983. Phytoplankton production and winter mixing: contrasting effects in two oligotrophic lakes. J. Ecol. 71: 1–20

    Article  CAS  Google Scholar 

  • Vant, B., and B. Huser., 1989. Cyanobacterial growth and dominance in two eutrophic lakes. Ergebnisse der Limnologie (Special Issue). 32: 1–254

    Google Scholar 

  • Viner, A. B., and E. W. White. 1987. Lake Plankton processes: Phytoplankton growth. p. 191–223. InA. B. Viner [ed.], Inland waters of New Zealand. DSIR Science Information Publishing Center, Wellington

    Google Scholar 

  • Vollenweider, R. A. 1979. Das Nährstoffbelastungskonzept al s Grundlage fir den externen Eingriff in den Eutrophierungsprozess stehender Gewässer und Talsperren. Z. Wass Abwass. Forsch. 2/79: 45–56

    Google Scholar 

  • von Sperling, E. 1997. The process of biomass formation as the key point in the restoration of tropical eutrophic lakes. Hydrobiologia 342/343: 351–354

    Google Scholar 

  • White, E. W., 1982. Eutrophication in New Zealand lakes, p. 74–78. In Water in New Zealand’s Future; Proceedings of the 4th National Water Conference. Institution of Professional Engineers of New Zealand, Auckland.

    Google Scholar 

  • White, E. W., 1983. Lake eutrophication in New Zealand — a comparison with other countries of the Organisation for Economic Co-operation and Development. N. Z. J. Mar. and Fresh. Res. 17: 437–444

    Article  CAS  Google Scholar 

  • White, E. W., G. Payne, S. Pickmere, andP. Woods. 1986. Nutrient demand and availability related to growth among natural assemblages of phytoplankton. N. Z. J. Mar. and Fresh. Res. 20: 199–208

    Article  CAS  Google Scholar 

  • Williams, W. D. 1974. Freshwater Crustacea. p.113–170. In W. D. Williams [ed.], Biogeography and Ecology in Tasmania. Dr. W. Junk Publishers, The Hague, Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Jeppesen, E., Søndergaard, M., Jensen, J.P., Lauridsen, T.L., Howard-Williams, C., Kelly, D. (2003). Recovery from Eutrophication. In: Kumagai, M., Vincent, W.F. (eds) Freshwater Management. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68436-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68436-7_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68438-1

  • Online ISBN: 978-4-431-68436-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics