Skip to main content

Change of Cytosolic Ca-Ion Concentration in the Contraction and Relaxation Cycle of Physarum Microplasmodia

  • Chapter
Cell Dynamics

Part of the book series: Protoplasma ((PROTOPLASMA,volume 1))

Summary

Cytosolic free Ca2+ concentration, [Ca2+]i, in microplasmodia of Physarum polycephalum showing relatively synchronized contraction and relaxation cycles, was measured by a highly fluorescent Ca2+-sensitive dye, fura-2. Fura-2 dissolved in a solution containing Mg-ATP and sorbitol was directly injected into microplasmodia, and easily diffused into the entire cytosol without being sealed off by the newly formed membrane. [Ca2+]i oscillated principally around 300 nM with a frequency similar to that of the contraction and relaxation cycle. [Ca2+]i was revealed to be high in the contracted phase of microplasmodia and low in the relaxed phase, although this clear relation endured for only several cycles.

Artificial elevation of free Ca2+ concentration, [Ca2+], of the bathing solution between pCa 8 and 6 brought about the contraction of saponin and EGTA-permeabilized microplasmodia in the presence of ATP. This ensemble of results strongly suggests that in living Physarum microplasmodia, the rise in [Ca2+]i induces the contraction of the actomyosin system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

EGTA:

ethylene glycol bis(β-aminoethyl ether)

N,N,N´:

N´-tetraacetic acid

References

  • Achenbach F, Wohlfarth-Bottermann K-E (1986 a) Reactivation of cell-free models of endoplasmic drops from Physarum polycephalum after glycerol extraction at low ionic strength. Eur J Cell Biol 40: 135–138

    PubMed  CAS  Google Scholar 

  • Achenbach F, Wohlfarth-Bottermann K-E (1986 b) Successive contraction-relaxation cycles experimentally induced in cell-free models of Physarum polycephalum. Eur J Cell Biol 42: 111–117

    CAS  Google Scholar 

  • Alléra A, Beck R, Wohlfarth-Bottermann K-E (1971) Weitreichende fibrilläre Protoplasmadifferenzierungen and ihre Bedeutung für die Protoplasmaströmung. VIII. Identifizierung der Plasmafilamente von Physarum polycephalum als F-actin durch Anlagerung von heavy meromysoin in situ. Cytobiologie 4: 437–449

    Google Scholar 

  • Brix K, Kukulies J, Stockem W (1987) Studies on microplasmodia of Physarum polycephalum. V. Correlation of cell surface morphology, microfilament organization and motile activity. Protoplasma 137: 156–167

    Article  Google Scholar 

  • Eisner DA, Valdeolmillos M (1986) A study of intracellular calcium oscillations in sheep cardiac purkinje fibres measured at the single cell level. J Physiol 372: 539–556

    PubMed  CAS  Google Scholar 

  • Fleischer M, Wohlfarth-Bottermann K-E (1975) Correlation between tension force generation, fibrillogenesis and ultrastruc- ture of cytoplasmic actomyosin during isometric and istotonic contractions of protoplasmic strands. Cytobiologie 10: 339–365

    Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450

    PubMed  CAS  Google Scholar 

  • Hatano S (1970) Specific effect of Ca2+ on movement of plasmodial fragment obtained by caffeine treatment. Exp Cell Res 61: 199–203

    Article  PubMed  CAS  Google Scholar 

  • Hatano S, Oosawa F (1971) Movement of cytoplasm in plasmodial fragment obtained by caffeine treatment. I. Its Ca + + sensitivity. J Physiol Soc Jpn 33: 589–590

    CAS  Google Scholar 

  • Ishigami M, Nagai R, Kuroda K (1981) A polarized light and electron microscopic study of the birefringent fibrils in Physarum plasmodia. Protoplasma 109: 91–102

    Article  Google Scholar 

  • Ishigami M (1986) Dynamic aspects of the contractile system in Physarum plasmodium: I. Changes in spatial organization of the cytoplasmic fibrils according to the contraction-relaxation cycle. Cell Motil 6: 439–447

    Article  Google Scholar 

  • Ishigami M, Kuroda K, Hatano S (1987) Dynamic aspects of the contractile system in Physarum plasmodium. III. Cyclic contraction-relaxation of the plasmodial fragment in accordance with the generation-degeneration of cytoplasmic actomyosin fibrils. J Cell Biol 105: 381–386

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N, Kuroda K (1958) Studies on the velocity distribution of the protoplasmic streaming in the myxomycete plasmodium. Protoplasma 49: 1–4

    Article  Google Scholar 

  • Kamiya N (1959) Protoplasmic streaming. Protoplasmatologia 8, 3 a: 1–199

    Google Scholar 

  • Kamiya N (1979) Dynamic aspects of movement in the myxomycete plasmodium. In: Hatano S, Ishikawa H, Sato H (eds) Cell motility: molecules and organization. Tokyo University Press, Tokyo, pp 399–414

    Google Scholar 

  • Kamiya N (1986) Some motility characteristics of living cytoplasm: From observations on Physarum. In: Ishikawa H, Hatano S, Sato H (eds) Cell motility: mechanism and regulation. Tokyo University Press, Tokyo, pp 577–585

    Google Scholar 

  • Kargacin GJ, Fay FS (1987) Physiological and structural properties of saponin-skinned single smooth muscle cells. J Gen Physiol 90: 49–73

    Article  PubMed  CAS  Google Scholar 

  • Kohama K (1981) Ca-dependent inhibitory factor for the myosinactin-ATP interaction of Physarum polycephalum. J Biochem 90: 1829–1832

    PubMed  CAS  Google Scholar 

  • Kohama K, Uyeda TQP, Takano-Ohmuro H, Tanaka T, Yamaguchi T, Maruyama K, Kohama T (1985 a) Ca2+-binding light chain of Physarum myosin confers inhibitory Ca’ +-sensitivity on actinmyosin-ATP interaction via actin. Proc Jpn Acad 61 B: 501–505

    Article  CAS  Google Scholar 

  • Kohama K, Shimmen T (1985b) IihIbitoGy Ca2+-control of movement of beads coated with Physarum myosin along actin-cables in Chara internodal cells. Protoplasma 129: 88–91

    Article  Google Scholar 

  • Kohama K, Kendrick-Jones J (1986) The inhibitory Ca2+-regulation of the actin-activated Mg-ATPase activity of myosin from Physarum polycephalum plasmodia. J Biochem 99: 1433–1446

    PubMed  CAS  Google Scholar 

  • Kuroda R, Kuroda H (1982) Relation of cytoplasmic calcium to contractility in Physarum polycephalum. J Cell Sci 53: 37–48

    PubMed  CAS  Google Scholar 

  • Miller AJ, Sanders D (1987) Depletion of cytosolic free calcium induced by photosynthesis. Nature 326: 397–400

    Article  CAS  Google Scholar 

  • Nagai R, Yoshimoto Y, Kamiya N (1978) Cyclic production of tension force in the plasmodial strand of Physarum polycephalum and its relation to microfilament morphology. J Cell Sci 33: 205–225

    PubMed  CAS  Google Scholar 

  • Naib-Majani W, Achenbach F, Weber K, Wohlfarth-Botter-Mann K-E, Stockem W (1984) Immunocytochemistry of the acellular slime mold Physarum polycephalum. IV. Differentiation and dynamics of the polygonal actomyosin system. Differentia- tion 26: 11–22

    Article  CAS  Google Scholar 

  • Ogihara S (1982) Calcium and ATP regulation of the oscillatory torsional movement in a Triton model of Physarum plasmodial strands. Exp Cell Res 138: 377–384

    Article  PubMed  CAS  Google Scholar 

  • Ikebe M, Takahashi K, Tonomura Y (1983) Requirement of phosphorylation of Physarum myosin heavy chain for thick filament formation, actin activation of Mg2+ -ATPase activity, and Ca2+-inhibitory superprecipitation. J Biochem 93: 205–223

    PubMed  Google Scholar 

  • Poenie M, Alderton J, Tsien RY, Steinhardt RA (1985) Changes of free calcium levels with stages of the cell division cycle. Nature 315: 147–149

    Article  PubMed  CAS  Google Scholar 

  • Ridgway EB, Durham ACH (1976) Oscillations of calcium ion concentrations in Physarum polycephalum. J Cell Biol 69: 223–226

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Hatano S, Sato Y (1981) Contractility and protoplasmic streaming preserved in artificially induced plasmodial fragments, the “caffeine drops”. Protoplasma 109: 187–208

    Article  CAS  Google Scholar 

  • Stockem W, Kukulies J, Brix K (1987) Analysis of cytoplasmic actomyosin functions in Physarum polycephalum by fluorescent analog chemistry. In: Wohlfarth-Bottermann KE (ed) Nature and function of cytoskeletal proteins in motility and transport. Gustav Fischer Verlag, Stuttgart New York (Progress in zoology, vol 34, pp 25–30 )

    Google Scholar 

  • Sugino H, Matsumura F (1983) Fragmin induces tension reduction of actomyosin threads in the presence of micromolar levels of Ca2+. J Cell Biol 96: 199–203

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY, Poenie M (1986) Fluorescence ratio imaging: a new window into intracellular ionic signaling. TIBS 11: 450–455

    CAS  Google Scholar 

  • Ueda T, Gotz von Olenhusen K, Wohlfarth-Bottermann K-E (1978) Reaction of the contractile apparatus in Physarum to injected Ca++, ATP, ADP and 5’AMP. Eur J Cell Biol 18: 76–94

    CAS  Google Scholar 

  • Wier WG, Cannell MB, Berlin JR, Marban E, Lederer WJ (1987) Cellular and subcellular heterogeneity of [Ca2+1; in single heart cells revealed by fura-2. Science 235: 325–328

    Article  PubMed  CAS  Google Scholar 

  • Williams DA, Fogarty KE, Tsien RY, Fay FS (1985) Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using fura-2. Nature 318: 558–561

    Article  PubMed  CAS  Google Scholar 

  • Wohlfarth-Bottermann K-E (1964) Differentiations of the ground cytoplasm and their significance for the generation of the motive force of amoeboid movement. In: Allen RD, Kamiya N (eds) Primitive motile systems in cell biology. Academic Press, New York London, pp 79–109

    Google Scholar 

  • Wohlfarth-Bottermann K-E, Fleischer M (1976) Cyclic aggregation patterns of cytoplasmic F-actin coordinated with oscillating tension force generation. Cell Tissue Res 165: 327–344

    Article  Google Scholar 

  • Yoshimoto Y, Kamiya N (1978) Studies on contraction rhythm of the plasmodial strand. IV. Site of active oscillation in an advancing plasmodium. Protoplasma 95: 123–133

    Article  Google Scholar 

  • Matsumura F, Kamiya N (1981) Simultaneous oscillations of Ca2+ efflux and tension generation in the permealized plasmodial strand of Physarum. Cell Motil 1: 433–143

    Article  PubMed  Google Scholar 

  • Kamiya N (1984) ATP- and calcium-controlled contraction in a saponin model of Physarum polycephalum. Cell Struct Funct 9: 135–141

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Dr. Noburo Kamiya on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag

About this chapter

Cite this chapter

Kuroda, R., Hatano, S., Hiramoto, Y., Kuroda, H. (1988). Change of Cytosolic Ca-Ion Concentration in the Contraction and Relaxation Cycle of Physarum Microplasmodia. In: Tazawa, M. (eds) Cell Dynamics. Protoplasma, vol 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9008-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9008-1_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9010-4

  • Online ISBN: 978-3-7091-9008-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics