Skip to main content

Changes in cytokines and neurotrophins in Parkinson’s disease

  • Conference paper
Advances in Research on Neurodegeneration

Summary

Degeneration of the dopamine (DA) neurons of the substantia nigra pars compacta and the resulting loss of nerve terminals accompanied by DA deficiency in the striatum are responsible for most of the movement disturbances called parkinsonism, observed in Parkinson’s disease (PD). One hypothesis of the cause of degeneration of the nigrostriatal DA neurons is that PD is caused by programmed cell death (apoptosis) due to increased levels of cytokines and/or decreased ones of neurotrophins. We and other workers found markedly increased levels of cytokines, such as tumor necrosis factor (TNF)-a, interleukin (IL)-1ß, IL-2, IL-4, IL-6, transforming growth factor (TFG)-a, TGF-131, and TGF-ß2, and decreased ones of neurotrophins, such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), in the nigrostriatal DA regions and ventricular and lumbar cerebrospinal fluid of PD patients. Furthermore, the levels of TNF-a receptor Rl (TNF-R1, p55), bc1-2, soluble Fas (sFas), and the activities of caspase-1 and caspase-3 were also elevated in the nigrostriatal DA regions in PD. In experimental animal models of PD, IL-lß level was increased and NGF one decreased in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonian mice, and TNF-a level was increased in the substantia nigra and striatum of the 6-hydroxydopamine (6OHDA)-injected side of hemiparkinsonian rats. L-DOPA alone or together with 6OHDA does not increase the level of TNF-a in the brain in vivo. Increased levels of proinflammatory cytokines, cytokine receptors and caspase activities, and reduced levels of neurotrophins in the nigrostriatal region in PD patients, and in MPTP- and 6OHDA-produced parkinsonian animals suggest increased immune reactivity and programmed cell death (apoptosis) of neuronal and/or glial cells. These data indicate the presence of such proapoptotic environment in the substantia nigra in PD that may induce increased vulnerability of neuronal or glial cells towards a variety of neurotoxic factors. The probable causative linkage among the increased levels of proinflammatory cytokines and the decreased levels of neurotrophins, candidate parkinsonism-producing neurotoxins such as isoquinoline neurotoxins (Review; Nagatsu, 1997), and the genetic susceptibility to toxic factors, remains for further investigation in the molecular mechanism of PD. The increased cytokine levels, decreased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anglade P, Vyas S, Javoy-Agid F, Herreto MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch C, Agid Y (1997a) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12: 25–31

    CAS  Google Scholar 

  • Anglade P, Vyas S, Hirsch EC, Agid Y (1997b) Apoptosis in dopaminergic neurons of the human substantia nigra during normal aging. Histol Hisopathol 12: 603–610

    CAS  Google Scholar 

  • Aubin A, Curet O, Deffois A, Carter C (1998) Aspirin and salycylate protect against MPTP-induced dopamine depletion in mice. J Neurochem 71: 1635–1642

    Article  PubMed  CAS  Google Scholar 

  • Banati RB, Daniel SE, Blunt SB (1998) Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease. Mov Disord 13: 221–227

    Article  PubMed  CAS  Google Scholar 

  • Blum-Degan D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P (1995) Interleukin 113 and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202: 17–20

    Article  Google Scholar 

  • Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC (1994) Immunocytochemical analysis of tumor necrosis factor and its receptor in Parkinson’s disease. Neurosci Lett 172: 151–154

    Article  PubMed  CAS  Google Scholar 

  • Breitner JC (1996) The role of anti-inflammatory drugs in the prevention and treatment of Alzheimer’s disease. Ann Rev Med 47: 401–411

    Article  PubMed  CAS  Google Scholar 

  • Burke RE, Kholodilov NG (1998) Programmed cell death: does it play a role in Parkinson’s disease? Ann Neurol 44 Suppl 1: S126–S133

    Article  PubMed  CAS  Google Scholar 

  • Caparros-Lefebvre D, Elbaz A, the Caribbean Parkinsonism Study Group (1999) Possible relation of atypical parkinsonism in the French west indies with consumption of tropical plants and case-control study. Lancet 354: 281–286

    CAS  Google Scholar 

  • Dickson DW, Lee SC, Mattiace LA, Yen SH, Brosnan CF (1993) Microglia and cytokines in neurological diseases, with special reference to AIDS and Alzheimer’s disease. Glia 7: 76–82

    Article  Google Scholar 

  • Fan DS, Ogawa M, Ikeguchi K, Fujimoto K, Uraba M, Kume K, Nishizawa M, Matsushita N, Kiuchi K, Ichinose H, Nagatsu T, Kurzman GJ, Nakano I, Ozawa K (1996) Prevention of dopaminergic neuron death by adeno-associated virus vector-mediated GDNF gene transfer in rat mesencephalic cells in vitro. Neurosci Lett 248: 61–64

    Article  Google Scholar 

  • Foley P, Riederer P (1999) Pathogenesis and preclinical course of Parkinson’s disease. J Neural Transm Suppl 56: 31–74

    Article  PubMed  CAS  Google Scholar 

  • Fujishiro K, Hagihara M, Takahashi A, Nagatsu T (1999) Concentrations of neopterin and biopterin in the cerebrospinal fluid of patients with Parkinson’s disease. Biochem Med Metab Biol 44: 97–100

    Article  Google Scholar 

  • Furukawa Y, Nishi K, Kondo T, Mizuno Y, Narabayashi H (1993) CSF biopterin levels and clinical features of patients with juvenile parkinsonism. Adv Neurol 60: 562–567

    PubMed  CAS  Google Scholar 

  • Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russel D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380: 252–255

    Article  PubMed  CAS  Google Scholar 

  • Ichinose H, Ohye T, Takahashi E, Seki N, Hori T, Segawa M, Nomura Y, Endo K, Tanaka H, Tsuji S, Fujita K, Nagatsu T (1994) Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat Genet 8: 236–242

    Article  PubMed  CAS  Google Scholar 

  • Ichinose H, Suzuki T, Inagaki H, Ohye T, Nagatsu T (1999a) Molecular genetics of dopa-responsive dystonia. Biol Chem 380: 1355–1364

    Article  CAS  Google Scholar 

  • Ichinose H, Ohye T, Suzuki T, Sumi-Ichinose C, Nomura T, Hagino Y, Nagatsu T (1999b) Molecular cloning of the human Nurr 1 gene: characterization of the human gene and cDNAs. Gene 230: 233–239

    Article  CAS  Google Scholar 

  • Jelliger KA (1999) Is there apoposis in Lewy body disease? Acta Neuropathol (Berl) 97: 413–415

    Article  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutation in the perkin gene cause autosomal recessive juvenile parkinsonism. Nature 329: 605–608

    Google Scholar 

  • Kosel S, Egensperger R, von-Eitzen U, Mehraein P, Graeber MB (1997) On the question of apoptosis in the parkinsonian substantia nigra. Acta Neuropathol (Berl) 93: 105–108

    Article  CAS  Google Scholar 

  • Kotake Y, Tasaki Y, Makino Y, Ohta S, Hirobe M (1995) 1-Benzyl-1,2,3,4tetrahydroisoquinoline as a parkinsonism-inducing agent: a novel endogenous amine in mouse brain and parkinsonian brain. J Neurochem 65: 2633–2638

    Article  PubMed  CAS  Google Scholar 

  • Levivier M, Przedborski S, Bencsics C, Kang UJ (1995) Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci 15: 7810–7820

    PubMed  CAS  Google Scholar 

  • Masliah E, Mallory M, Alford M, Tanaka S, Hansen LA (1998) Caspase dependent DNA fragmentation might be associated with excitotoxicity in Alzheimer’s disease. J Neuropathol Exp Neurol 57: 1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Matsubara K, Kobayashi S, Kobayashi Y, Yamashita K, Koide H, Hatta M, Iwamoto K, Tanaka O, Kimura K (1995) ß-Carbolinium cations, endogenous MPP+ analogs in the lumber cerebrospinal fluid of parkinsonian patients. Neurology 45: 2240–2245

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s disease and Alzheimer’s disease brains. Neurology 38: 1285–1291

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki H, Goto K, Mori H, Mizuno Y (1996) Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci 137: 120–123

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994a) Tumor necrosis factor-a (TNF-a) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165: 208–210

    Article  CAS  Google Scholar 

  • Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T (1994b) Interleukin-1ß, interleukin-6, epidermal growth factor and transforming growth factor-a are elevated in the brain from parkinsonian patients. Neurosci Lett 180: 147–150

    Article  CAS  Google Scholar 

  • Mogi M, Harada M, Kondo T, Narabayashi H, Riederer P, Nagatsu T (1995a) Transforming growth factor-ß1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson’s disease. Neurosci Lett 193: 129–132

    Article  CAS  Google Scholar 

  • Mogi M, Harada M, Kondo T, Riederer P, Nagatsu T (1995b) Brain 132-microglobulin are elevated in the striatum in Parkinson’s disease. J Neural Transm [P-D Sect] 9: 87–92

    Article  CAS  Google Scholar 

  • Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T (1996a) Interleukin (IL)-113, IL-2, IL-4, IL-6 and transforming growth factor-a levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 211: 13–16

    Article  CAS  Google Scholar 

  • Mogi M, Harada M, Kondo T, Mizuno Y, Narabayashi H, Riederer P, Nagatsu T (1996b) bc1–2 Protein is increased in the brain from parkinsonian patients. Neurosci Lett 215: 1–2

    CAS  Google Scholar 

  • Mogi M, Harada M, Kondo T, Riederer P, Nagatsu T (1996c) Interleukin-2 but not basic fibroblast growth factor is elevated in parkinsonian brain. J Neural Transm 103: 1077–1081

    Article  CAS  Google Scholar 

  • Mogi M, Harada M, Kondo T, Mizuno Y, Narabayashi H, Riederer P, Nagatsu T (1996d) The soluble form of Fas molecule is elevated in parkinsonian brain tissues. Neurosci Lett 220: 195–198

    Article  CAS  Google Scholar 

  • Mogi M, Togari A, Ogawa M, Ikeguchi K, Shizuma N, Fan D-S, Nakano I, Nagatsu T (1998) Effects of repeated systemic administration of 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine (MPTP) to mice on interleukin-113 and nerve growth factor in the striatum. Neurosci Lett 250: 25–28

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Togari A, Tanaka K, Ogawa N, Ichinose H, Nagatsu T (1999a) Increase in level of tumor necrosis factor (TNF)-a in 6-hydroxydopamine-lesioned striatum in rats without influence of systemic L-DOPA on the TNF-a induction. Neurosci Lett 268: 101–104

    Article  CAS  Google Scholar 

  • Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (1999b) Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neurosci Lett 270: 45–48

    Article  CAS  Google Scholar 

  • Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (2000) Caspase activities and tumor necrosis factor R1 (p55) level are elevated in the substantia nigra from Parkinsonian brain. J Neural Transm 107: 335–341

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T (1991) Genes for human catecholamine-synthesizing enzymes. Neurosci Res 12: 315–345

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T (1993) Biochemical aspects of Parkinson’s disease. Adv Neurol 60: 165–174

    PubMed  CAS  Google Scholar 

  • Nagatsu T (1997) Isoquinoline neurotoxins and Parkinson’s disease. Neurosci Res 29: 99–111

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T, Mogi M, Ichinose H, Togari A, Riederer P (1999) Cytokines in Parkinson’s disease. NeuroSci News 2: 88–90

    CAS  Google Scholar 

  • Naoi M, Maruyama Y, Dostert P, Hashizume Y, Nakahara D, Takahashi T, Ota M (1996) Dopamine-derived endogenous 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2,3,4tetrahydroisoquinoline, N-methyl-(R)-salsolinol, induced parkinsonism in rats: biochemcal, pathological and behavioral studies. Brain Res 707: 285–295

    Article  Google Scholar 

  • Naoi M, Maruyama W, Kasamatsu T, Dostert P (1998) Oxidation of Nmethyl(R)salsolinol: involvement to neurotoxicity and neuroprotection by endogenous catechol isoquinolines. J Neural Transm Suppl 52: 125–138

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW, Kordower JH, Freeman TB (1996) Fetal nigral transplantation as a therapy for Parkinson’s disease. Trends Neurosci 19: 102–109

    Article  PubMed  CAS  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Sternroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, brio GD, Golie LI, Nussbaum RL (1997) Mutation of the a-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045–2047

    Article  PubMed  CAS  Google Scholar 

  • Sacco J, Agnello D, Sottocorno M, Lozza G, Monopoll A, Vilia P, Ghezzl P (1998) Nonsteroidal anti-inflammatory drugs increase tumor necrosis factor production in the periphery but not in the central nervous system in mice and rats. J Neurochem 71: 2063–2070

    Article  PubMed  CAS  Google Scholar 

  • Segawa M, Hosaka A, Miyagawa F, Nomura Y, Imai H (1976) Hereditary progressive dystonia with marked diurnal fluctuation. Adv Neurol 14: 215–233

    PubMed  CAS  Google Scholar 

  • Snyder SH, Lai MM, Burnett PE (1998) Immunophilins in the nervous system. Neuron 21: 283–294

    Article  PubMed  CAS  Google Scholar 

  • Spina MB, Squinto SP, Miller J, Lindsay RM, Hyman C (1992) Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and Nmethylpyridinium ion activity: involvement of the glutathione system. J Neurochem 59: 99–106

    Article  PubMed  CAS  Google Scholar 

  • Stadtmann C, Bruck W, Bancher C, Jellinger K, Lassmann H (1998) Alzheimer disease: DNA fragmentation indicates increased neuronal vulnerability, but not apoptosis. J Neuropathol Exp Neurol 57: 456–464

    Article  Google Scholar 

  • Stern G (1996) Parkinson’s disease: the apoptosis hypothesis. Adv Neurol 69: 101–107 Stewart WF, Kawas C, Corrada M, Metter EJ (1997) Risk of Alzheimer’s disease and duration of NSAID use. Neurology 48: 101–107

    Google Scholar 

  • Takahashi H, Levine RA, Galloway MP, Snow BJ, Calne DB, Nygaard TG (1994) Biochemical and fluorodopa positron emmision tomograph findings in an asymptomatic carrier of the gene for dopa-responsive dystonia. Ann Neurol 35: 354–356

    Article  PubMed  CAS  Google Scholar 

  • Tatton NA, Maclean-Fraser A, Tatton WG, Perl DP, Olanow CW (1998) A fluorescent double-labeling method to detect and confirm apoptotic nuclei in Parkinson’s disease. Ann Neurol 44 Suppl 1: S142–S148

    Google Scholar 

  • Vawter MP, Dillon-Carter O, Tourtellotte WW, Carvey P, Freed WJ (1996) TGFßl and TGF132 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid. Exp Neurol 142: 313–322

    Article  PubMed  CAS  Google Scholar 

  • Wullner U, Kornhuber J, Weller M, Schulz JB, Loschmann PA, Riederer P, Klockgether T (1999) Cell death and apoptosis regulating proteins in Parkinson’s disease¡ªa cautionary note. Acta Neuropathol (Berl) 97: 408–412

    Article  CAS  Google Scholar 

  • Yurek DM, Lu W, Hipkens S, Wiegand SJ (1996) BDNF enhances the functional reinner-vation of the striatum by grafted fetal DA neurons. Exp Neurol 137: 105–118

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this paper

Cite this paper

Nagatsu, T., Mogi, M., Ichinose, H., Togari, A. (2000). Changes in cytokines and neurotrophins in Parkinson’s disease. In: Riederer, P., et al. Advances in Research on Neurodegeneration. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6301-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6301-6_19

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83537-1

  • Online ISBN: 978-3-7091-6301-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics