Skip to main content

Blood Rheology and Its Implication in Flow of Blood

  • Chapter
Arteries and Arterial Blood Flow

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 270))

Summary

Rheological behaviour of blood is studied as dominated by plasma viscosity, hematocrit and Red Cell properties, namely aggregability and deformability. Quantitative models for highly concentrated suspensions, which exhibit shear thinning, thixotropy and viscoelasticity, are discussed. Annular (two-phase) flow models are developped for analysing blood flow in narrow vessels. Some examples in clinical application are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • ANCZUROWSKI E., MASON S.G. (1967), The kinetics of flowing dispersions. III. Equilibrium orientations of rods and discs. J.Colloid Interface Sci. 23, 533–546.

    Google Scholar 

  • ARRHENIUS S. (1917), The viscosity of solutions. Biochem.J. 11, 112–113.

    CAS  PubMed  Google Scholar 

  • BARBEE J.H. and COKELET G.R. (1971), The Farhaeus effect. Microvasc.Res. 3, 1–21.

    Google Scholar 

  • BATCHELOR G.K. and GREEN J.T. (1972), The determination of the bulk stress in a suspension of spherical particles to order c2. J.Fluid.Mech., 56, 401–427.

    Google Scholar 

  • BAYLISS L. (1952), Rheology of blood and lymph, In: Deformation and Flow in Biological Systems, A. Frey-Wissling (Ed), North Holland Publ., Amsterdam. Chap. 6, pp 355–415.

    Google Scholar 

  • BERGEL D.H. (1972), The rheology of human blood vessels. In: Biomechanics: its foundations and objectives. Y.C. Fung, N. Perrone and M. Anliker (Eds) Prentice Hall, Inc. New-Jersey, pp. 63–103.

    Google Scholar 

  • BLOCH E.H. (1962), A quantitative study of the hemodynamics in the living microvascular system. Amer.J.Anatomy, 110, 125–153.

    CAS  Google Scholar 

  • BORN G.V.R., MELLING A. and WHITELAW J.H. (1978), Laser doppler microscope for blood velocity measurements. Biorheology, 15, 163–172.

    CAS  PubMed  Google Scholar 

  • BRINKMAN H.C. (1952), The viscosity of concentrated suspensions and solutions. J.Chem.Phys., 20, 571.

    CAS  Google Scholar 

  • BROCHARD F. (1977), Une bulle dégonflée: le globule rouge. La Recherche 75, 174–177.

    Google Scholar 

  • BROOKS D.E., GOODWIN J.W. and SEAMAN G.V.F. (1970), Interactions among erythrocytes under shear. J.Appl.Physiol., 28, 172–177.

    CAS  PubMed  Google Scholar 

  • BROOKS D.E. and SEAMAN G.V.F. (1971), Role of mutual cellular repulsions in the rheology of concentrated red blood cell suspensions. In: Theoretical and Clinical Hemorheology, H.H. Hertert and A.L. Copley (Eds), Springer Verlag, Berlin, pp 127–135.

    Google Scholar 

  • BROOKS D.E., GOODWIN J.W., SEAMAN G.V.F. (1974), Rheology of erythrocyte suspensions: electrostatic factors in the dextran-mediated aggregation of erythrocytes. Borheology 11, 69–77.

    CAS  Google Scholar 

  • BROOKS D.E. (1976) Red cell interactions in low flow states. In: Micro-circulation, vol. I, J. Grayson and W. Zingg (Eds), Plenum Press, New-York PP 33–52.

    Google Scholar 

  • BUGLIARELLO G., KAPUR C., HSIAO G. (1965), The profile viscosity and others characteristics of blood flow in a non-uniform shear field. In: Proc.Four:Int.Congr.on Rheology, 4, A.L. Copley (Eds), Interscience, N.Y., pp 351–370.

    Google Scholar 

  • CHIEN S., USAMI S., JAN K.M. (1971b), Fundamental determinants of blood viscosity. In The Symposium on Flow, Dowdell ( Ed. ), Pittsburg.

    Google Scholar 

  • CHIEN S., LUSE S.A., JAN K.M., USAMI S., MILLER L.H. and FREMOUNT H. (1971c),Effects of macromolecules on the rheology and ultrastructure of red cell suspensions. In: Proc.6th Europ.Con-f.on Microcirculation, Karger, Basel (Eds.), 29–34.

    Google Scholar 

  • CHIEN S., USAMI S., DELLENBACK R.J., BRYANT C.A. and GREGERSEN M.I. (1971d) Change of erythrocyte deformability during fixation in acetaldehyde. In: Theoretical and Clinical Hemorheology, Hartett H.H. and Copley A.L. (Eds), Berlin, Springer-Varlag, pp 136–143.

    Google Scholar 

  • CHIEN S. (1972), Present state of blood rheology. In: Hemodilution: Theoretical Basis and Clinical Applications. Messmer K., Schmid-Schönbein H., S. Karger (Eds.), Basel, 1–40.

    Google Scholar 

  • CHIEN S., KING R.G., SKALAK, R., USAMI S. and COPLEY A.L. (1975), Viscoelastic properties of human blood and red cell suspensions. Biorheology, 12, 341–346.

    CAS  PubMed  Google Scholar 

  • CHIEN S., (1979), Blood rheology. In: Quantitative Cardiovascular Studies. Hwang N.H.C., Gross D.R., Patel D.J. (Eds), Univ.Park Press, Baltimore (USA), 241–287.

    Google Scholar 

  • COKELET G.R., MERRILL F.W., GILLILAND E.R. and SHIN H. (1963). The rheology of human blood measurement near and at zero shear rate. Trans.Soc. Rheol., 7, 303–317.

    Google Scholar 

  • COKELET G.R. (1972) Rheology of blood. In: Biomechanics, its Foundations and Perspectives, Y.C. Fung, N. Perrone and M. Anliker (Eds), Prentice Hall, Inc., Englewood Cliffs, N.J., pp 63–103.

    Google Scholar 

  • COKELET G.R. (1976) Macroscopic rheology and tube flow of human blood. In: Microcirculation Vol 1. J. Grayson and W. Zingg (Eds), Plenum Press. New York, pp 9–32

    Google Scholar 

  • COPLEY A.L., HUANG C.R., KING R.G. (1973) Rheogoniometric studies of whole human blood at shear rates from 1000 to 0.0009 sec-1. Part 1 Experimental findings. Biorheology 10, 17–22.

    CAS  PubMed  Google Scholar 

  • COPLEY A.L., HUANG C.R., KING R.G. (1973) Part II. Mathematical interpretation. Biorheology, 10, 23–28.

    PubMed  Google Scholar 

  • COPLEY A.L., KING R.G., CHIEN S., USAMI S., SKALAK R. and HUANG C.R(1975) Microscopic observations of viscoelasticity of human blood in steady and oscillatory shear. Biorheology 12, 257–263.

    Google Scholar 

  • COPLEY A.L., KING R.G., HUANG C.R. (1976) Erythrocyte sedimentation of human blood at varying shear rates. Biorheology, 13, 281–86.

    CAS  PubMed  Google Scholar 

  • COULTER Jr. N.A., MEGHA Singh (1971), Frequency dependence of blood viscosity in oscillatory flow. Biorheology, 8, 115–124

    PubMed  Google Scholar 

  • CROSS M.M. (1965) Rheology of Non-Newtonian fluids: A new flow equation for pseudoplastic systems. Colloid Sci 20, 417–437

    CAS  Google Scholar 

  • DEVENDRAN T. and SCHMID-SCHONBEIN H., (1975) Axial Concentration in Narrow Tube Flow for Various RBC Suspensions as Function of wall shear stress. Pflügers Arch. 355: R20

    Google Scholar 

  • DINTENFASS L., (1964), Rheology of the packed red blood cells containing haemoglobins AA, SA, SS. J. Lab. Clin. Med. 64, 594–603.

    CAS  PubMed  Google Scholar 

  • DINTENFASS L., BURNARD E.D. (1966a) Effect of hydrogen ion concentration on in vitro viscosity of packed red cells and blood at high hematocrits. Med. J. Aust. 1, 1072–1078.

    CAS  PubMed  Google Scholar 

  • DINTENFASS L., JULLIAN D.G. and MILLER G. (1966b), Viscosity of Blood in normal Subjects and in Patients Suffering from Coronary Occlusion and Arterial Thrombosis. Am. Heart J., 71, 587–592.

    CAS  PubMed  Google Scholar 

  • DINTENFASS L., (1968), Internal viscosity of the red cell and a blood viscosity equation. Nature, Lond. 219, 956–957.

    CAS  Google Scholar 

  • DINTENFASS L., (1969), The internal viscosity of the Red cell and the structure of the red membrane. Considerations of the liquid Crystalline structure of the red cell interior and membrane from rheological data. Mol.Cryst. 8, 101–107.

    Google Scholar 

  • DINTENFASS L. (1971) Blood Microrheology Viscosity Factors in Blood Flow. Ischaemia and Thrombosis- Butterworths. London.

    Google Scholar 

  • DINTENFASS L. and KAMMER S. (1977) Plasma viscosity in 615 subjects. Effect of Fibrinogen, Globulin, and Cholesterol in Normals, Peripheral vascular.Disease Retinopathy and Melanoma. Biorheology, 14, 247–251.

    CAS  PubMed  Google Scholar 

  • DINTENFASS L. (1977) Blood Viscosity factors in severe non diabetic and diabetic retinopathy. Biorheology, 14, 151–157.

    CAS  PubMed  Google Scholar 

  • DINTENFASS L. (1979) Clinical applications of blood viscosity factors and functions: especially in the cardiovascular disorders. Biorheology 16, 69–84.

    CAS  PubMed  Google Scholar 

  • DORMANDY J.A. and EDELMAN J.B. (1973) High blood viscosity. An achological factor in deep venous thrombosis. British Journal of Surgery, 60, 187–189.

    CAS  PubMed  Google Scholar 

  • DUFAUX J., QUEMADA D., MILLS P. (1980). Velocity profiles measurements by Laser-Doppler velocimetry (LDV) in plane capillaries. Comparison with theoretical profiles from a two fluid model. In: Rheology, Vol 3. G. Astarita, G. Marruci and L. Nicolais (eds) Plenum Press, NY; pp 561–566

    Google Scholar 

  • DIX F.J. and SCOTT-BLAIR G.W. (1940) On the flow of suspensions through narrow tubes. J. Appl. Physics. 11. 574–581.

    CAS  Google Scholar 

  • FLAUD P., QUEMADA D. (1980) Role des effets non newtoniens dans l’écoulement pulsé d’un fluide dans un tuyau viscoelastique. Revue Phys. Appl. 15, 223–233

    Google Scholar 

  • FISCHER Th. M., SCHMID-SCHONBEIN H., STOHR M., (1978) Mechanical behaviour of human red blood cells in the shear field of viscous dextran solution. In: Cardiovascular and Pulmonary Dynamics. Jaffrin M.Y. ( ed ), Editions Inserm Paris pp. 243–256.

    Google Scholar 

  • FAHRAEUS R. (1929) The suspension stability of the blood. Physiol. Rev. 9. 241–274

    Google Scholar 

  • FAHRAEUS R. and LINDQVIST T. (1931) The viscosity of the blood in narrow capillary tubes. Amer. J. Physiol. 96: 562–568

    CAS  Google Scholar 

  • GELIN L.E. (1961) Disturbances of the flow properties of blood and its counter action in surgery. Acta Chirurgia, Scandinavia, 122, 287–295.

    CAS  Google Scholar 

  • De GENNES P.G. (1979). Conjectures on the transit!on from Poiseuille to plug flow in suspensions. J. de Physique 40, 783–787.

    Google Scholar 

  • GILLESPIE T. (1963) The effect of Aggregation and Liquid Penetration on the viscosity of dilute suspensions of spherical particles. J.Colloid Sci. 18, 32–40.

    CAS  Google Scholar 

  • GOLDSMITH H.L., MASON S.G. (1967) “The microrheology of dispersions”. In: Rheology: Theory and Applications. Eirich, (Ed) Acad.Press, N.Y. pp. 85–250.

    Google Scholar 

  • GOLDSMITH H.L., (1971) Deformation of human red cells in tube flow. Biorheology 7, 235–242.

    CAS  PubMed  Google Scholar 

  • GOLDSMITH H.L., (1968) The microrheology of red blood cell suspensions. J. Gen. Physiol. 52, 5–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  • GOLDSMITH H.L., (1973) The microrheology of human erythrocyte suspensions In: Proceed. XIIIe Int. Cong. Theor. and Appl. Mech. E. Becker and G.K. Mikhailov (eds), Springer Verlag, Berlin, pp 85–103.

    Google Scholar 

  • GREGERSEN, M.I., USAMI S., CHIEN S. and DELLENBACK R.J. (1967) Characteristics of torque-time records on heparinized and defibrinated elephant, human and goat blood at low shear rates (0.01 sec-1): effects of fibrinogen and Dextran (Dx 375). Bibl. anat. 9: 276–281.

    CAS  PubMed  Google Scholar 

  • HARKNESS W. (1971) The viscosity of human blood plasma. Its measurement in health and disease. Biorheology. 8, 171–193.

    CAS  PubMed  Google Scholar 

  • HAYNES R.H. and BURTON A.C. (1959) Role of the non Newtonian behavior of blood in hemodynamics. Amer. J. Physiol. 56, 197–943.

    Google Scholar 

  • HAYNES R.H. (1962) The viscosity of erythrocyte suspension. Biophysics 2, 95–102

    CAS  Google Scholar 

  • HEALY J.C., JOLY M. (1975) Rheological behaviour of blood in transient flow. Biorheology 12, 335–340.

    CAS  PubMed  Google Scholar 

  • HOARE E.M., BARNES A.J. and DORMANDY J.A. (1976) Abnormal Blood Viscosity in Diabetes Mellitus and Retinopathy. Biorheology, 13, 21–25.

    CAS  PubMed  Google Scholar 

  • HOUWINK R. (1949) Macromolecular sols without electrolyte character. In: Colloid Science, II, Reversible Systems, 153. Kruyt H.R. (Eds) Elese vier Publ., Amsterdam.

    Google Scholar 

  • HUANG C.R., SISKOVIC N., ROBERTSON R.W., FABISIAK W., SMITHERBERG E.H., COPLEY A.L. (1975), Quantitative characterization of whole human blood. Biorheology 12, 279–282.

    CAS  PubMed  Google Scholar 

  • ISOGAI Y., ICHIBIA K., IIDA A., CHIKATSU I. and ABE M. (1971), Viscosity of blood and plasma in various diseases. In: Theoretical and clinical hemorheology, Hartett H.H. and Copley A.L. (Eds), Springer-Verlag, ( Berlin ) pp 136–143.

    Google Scholar 

  • KARNIS A., GOLDSMITH H.L. and MASON S.G. (1966), The kinetics of flowing dispersions I: Concentrated suspensions of rigid particles. J.Coll. Interface Sci., 22, 531–553.

    CAS  Google Scholar 

  • KELLER J.B., RUBENFELD L.A. and MOLYNEUX J.E. (1967). Extremum principles for slow viscous flows with applications to suspensions. J. Fluid. Mech., 30, 97–125.

    Google Scholar 

  • KELLOG F. and GOODMAN J.R. (1960), Viscosity of blood myocardial infarction. Circulation Research, 8, 972–978.

    Google Scholar 

  • KLOSE H.J., VOLGER B., BRECHTELSBAUER H., HERNICH I. and SCHMID-SCHONBEIN H. (1972). Microrheology and light transmission of blood I. The photometric quantification of red cell aggregation and red cell orientation. Pflürers Arch., 333, 126–132.

    CAS  Google Scholar 

  • KRIEGER I.M. and ELROD H. (1953). Direct determination of the flow curves of non-newtonian fluids II: Shearing rate in the concentric cylinder viscometer. J.Appl.Phys., 24, 134–140.

    CAS  Google Scholar 

  • KRIEGER I.M. (in Surface and Coatings Related to Paper and Wood. R. Marchessault, C. Skaar ed. Syracuse Univ.Press (1967)) and T.J.DOUGHERTY, Some problems in the theory of colloids (Ph.D.Thesis, Case Inst.Techn. (1959)).

    Google Scholar 

  • KRIEGER I.M. (1963), A dimensional approach to colloid rheology. Trans. Soc.Rheol., 7, 101–109.

    Google Scholar 

  • KRIEGER I.M. and DOUGHERTY T.J. (1959). A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans.Soc.Rheol., 3, 137–152.

    CAS  Google Scholar 

  • LANDEL R.F., MOSER B.G. and BAUMAN A.J. (1965), Rheology of concentrated suspensions. Effect of a surfactant. In: Proceed. IVth Intern.Cong. on Rheology, Part 2, Lee E.H. (Eds), Interscience, N.Y., pp 663–693.

    Google Scholar 

  • LESSNER A., ZAHAVI J., SILBERBERG A., FREI E.H., and DREYFUS P. (1971) The viscoelastic properties of whole blood. In: Theoretical and Clinical Hemorheology; H.H. Hartert and A.L. Copley (Eds.) Springer-Verlag. New York, pp. 194–205

    Google Scholar 

  • LINDSLEY H., TELLER D., NOONAN B., PETERSON M. and MANNIK M. (1973). Hyperviscosity Syndrome in Multiple Myeloma. A reversible, concentration dependent Aggregation of the Myeloma Protein. The Amer of Medicine, 54, 682–688.

    CAS  Google Scholar 

  • MARON S.H. and SISKO A.W. (1957) Application of Ree-Eyring generalized flow theory to suspensions of spherical particles: II. Flow in low shear region. J. Colloid.Sci., 12, 99–107.

    CAS  Google Scholar 

  • MAUDE A.D. and WHITMORE R.L. (1958) Theory of the Blood Flow in Narrow Tubes. J. Appl.Physiol. 12: 105–113.

    CAS  PubMed  Google Scholar 

  • MATSUDA T. and MURAKAMI M. (1976). Relationship between fibrinogen and blood viscosity. Thrombosis Research, Suppl.II, 8, 25–33.

    CAS  Google Scholar 

  • MERRILL I.W., MARGETTS W.G., COKELET G.R., BRITTEN A., SALZMANE.W., PENNELL R.B. and MELIN M. (1955) Influence of plasma proteins on the rheology of human blood. In: Proc.4th Inter.Cong.on Rheologg. A.L. Copley (ed.) Pt, 4, Interscience ( Wiley ), New York. pp 601–12.

    Google Scholar 

  • MERRILL E.W., PELLETIER G.A. (1967) Viscosity of human blood: transition from newtonian to non-newtonian. J. Appl. Physiol. 23, 178–182.

    CAS  PubMed  Google Scholar 

  • MERRILL E.W., (1969) Rheology of blood. Physiol.Rev. 49: 863–888.

    Google Scholar 

  • MIDDLEMAN S. (1972) Transport phenomena in the cardiovascular system. Wiley-Interscience, N.Y. p. 91.

    Google Scholar 

  • MILLER L.H., USAMI S. and CHIEN S. (1971) Alteration in the rheologic properties of Plasmodium Knowlesi. infected red cells. A possible mechanism for capillary obstruction. J.Clin.Invest. 50, 1451–1455.

    CAS  PubMed Central  PubMed  Google Scholar 

  • MILLS P., QUEMADA D. and DUFAUX J. (1980) An optical method for studying RBC orientation and aggregation in a Couette flow of Blood Suspension. In: Rheology. G. Astarita, G. Marrucci, L. Nicolais (Eds) Plenum Press NY 1980. pp. 567–572.

    Google Scholar 

  • MOONEY M. (1951) The viscosity of a concentrated suspension of spherical particles. J.Colloid ScL. 6, 162–170.

    CAS  Google Scholar 

  • MOORE F. (1959) (Cited by Cheng et Evans, 1965 ). Trans.Brit.Ceram.Soc. 58, 470–492.

    Google Scholar 

  • OSTWALD W., AUERBACH R. (1926) Uber die Viscosität kolloider Lösungen im Struktur, Laminar. und Turbulenzgebiet. Kolloid Z. 38, 261–280.

    CAS  Google Scholar 

  • PALMER A.A. (1968) Some aspects of plasma skimming. In: Hemorheology. A.L. Copley (Eds.) Pergamon Press, Oxford. pp. 391–400.

    Google Scholar 

  • PRAGER S. (1963). Diffusion and viscous flow in concentrated suspensions. Physica 29, 129–139 (1963).

    Google Scholar 

  • QUEMADA D. (1976a). Red cell Aggregation and Thrombus formation: a rheological approach. Proceedings of the 16th International Congress of Hematology: Topics in Hematology. KYOTO, 1976. Excerpta Medica (Amsterdam) 415, 733–736.

    Google Scholar 

  • QUEMADA D. (1976b). Some new results in rheology of concentrated disperse systems and blood. In: Proceedings of the VIIth International Congress on Rheology. J. Kubat (ed.) Gothenburg, 1976, pp. 628–629.

    Google Scholar 

  • QUEMADA D. (1977) Rheology of concentrated disperse system and minimum energy dissipation principle. I. Viscosity-concentration relationship. Rheol. Acta 16, 82–94.

    Google Scholar 

  • QUEMADA D. (1978 a) Rheology of concentrated disperse systems, II. A model for non newtonian shear viscosity in steady flows. Rheol. Acta 17, 632–642.

    Google Scholar 

  • QUEMADA D. (1978b) Rheology of concentrated disperse systems. III. General features of the proposed non-newtonian model. Comparison with experimental data. Rheol. Acta 17, 643–653.

    CAS  Google Scholar 

  • QUEMADA D., DUFAUX J., MILLS P. (1980) A two-fluid model for highly concentrated suspension flow through narrow tubes and slits: velocity profiles, apparent fluidity and wall layer thickness. In: Rheology, Vo1. 3, G. Astarita, G. Marrucci and L. Nicolais (eds) Plenum Press, NY pp. 633–638

    Google Scholar 

  • QUEMADA D. (1981). A rheological model for studying the hematocrit dependence of red cell-red cell and red cell-protein interactions in blood Biorheology 18, 501–516.

    CAS  PubMed  Google Scholar 

  • QUEMADA D., MILLS P., DUFAUX J., SNABRE P., LAMBERT M. (1981) Sedimentation effects in viscometric measurements. In: Hemorheology and Diseases. J.F. Stoltz and P. Drouin (Eds). Doin editeurs. Paris. pp 31–41.

    Google Scholar 

  • REE T., EYRING H. (1955) Theory of non-newtonian flow. I. Solid Plastic System. J.Appl.Phys., 26, 793–804.

    CAS  Google Scholar 

  • ROBINSON J.V. (1949) The viscosity of suspensions of spheres. J. Phys. and Colloid Chem. 53, 1042–1056.

    CAS  Google Scholar 

  • ROSCOE R. (1952) The viscosity of suspensions of rigid spheres. Brit. J. Appt. Phys. 3, 267–269.

    Google Scholar 

  • RUCKENSTEIN E. and MEWIS J. (1973) Kinetics of Structural Changes in Thixotropic Fluids. Colloid and Interface Sci 44, 532–541

    Google Scholar 

  • SCHMID-SCHONBEIN H., WELLS R.E., GOLDSTONE J. (1971) Fluid drop-like behaviour of erythrocytes. Disturbance in pathology and its quantification. Biorheology 7, 227–234.

    CAS  PubMed  Google Scholar 

  • SCHMID-SCHONBEIN H., WELLS R.E. (1971) Red cell aggregation and cell deformation: their influence on blood rheology in health and disease. In: Theoretical and Clinical Hemorheology, Hartet H.H. and Copley A.L. (Eds) Berlin, Springer-Verlag, pp. 348–355.

    Google Scholar 

  • SCHMID-SCHONBEIN H., GALLASCH G., VOLGER E., KLOSE H.J. (1973) Microrheology and protein chemistry of pathological red cell aggregation (blood sludge) studied in vitro. Biorheology 10, 213–227.

    CAS  PubMed  Google Scholar 

  • SCHMID-SCHONBEIN H. (1975) Erythrocyte rheology and the optimization of mass transport in the microcirculation. Blood Cells 2, 285–306.

    Google Scholar 

  • SCHMID-SCHONBEIN H. (1976) Microrheology of erythrocytes, blood viscosity and the distribution of blood flow in the microcirculation. In: International Review of Physiology. Cardiovascular Physiology. A.C. Guyton and A.W. Cowley (Eds) University Park Press. Baltimore pp. 1–62

    Google Scholar 

  • SCHMID-SCHONBEIN H., FISCHER T., DRIESSEN G., RIEGER H.: Microcirculâtion In: Quantitative Cardiovascular Studies: Clinical and Research Applications of Engineering Principles, N.H.C. Hwang, D.R. Gross and D.J. Patel (eds) Univ. Park Press, Baltimore (1979), Chap. 8, 353.

    Google Scholar 

  • SCHOLZ P.M., KARIS J.H., GUMP F.E., KINNEY J.M. and CHIEN S. (1975) Correlation of blood rheology with vascular resistance in critically ill patients. J.appl.Physiol. 39, 1008–1011

    CAS  PubMed  Google Scholar 

  • SCOTT BLAIR G.W. (1959). An equation for the flow of blood, plasma and serum through glass capillaries. Nature 183, 613–615.

    Google Scholar 

  • SEGRE G. and SILBERBERG A. (1962) Behavior of macroscopic rigid spheres in Poiseuille flow. J. Fluid Mech. 14, 115–135: 136–157

    Google Scholar 

  • SUTERA S.P. (1978) Red cell motion and deformation in the microcircula- tion. In: Cardiovascular and Pulmonary Dynamics. Jaffrin M.Y. Eds. Editions, Inserm Paris pp. 221–242.

    Google Scholar 

  • TAYLOR G. (1932) The viscosity of a fluid containing small drops of another fluid. Proc.Roy.Soc.(London) 138A, 41–45

    CAS  Google Scholar 

  • THOMAS H.W. (1963) The Wall Effect in Capillary Instruments, Biorheology 1: 41–56.

    Google Scholar 

  • THURSTON G.B. (1976) The viscosity and viscoelasticity of blood in small diameter tubes. Microvasc. Res. 11: 133–146

    CAS  PubMed  Google Scholar 

  • THURSTON G.B. (1979a) Erythrocyte Rigidity as a Factor in Blood Rheology: Viscoelastic Dilatancy. J. of Rheology, 23, 703–719.

    Google Scholar 

  • THURSTON G.B. (1979b) Rheological parameters for the viscosity viscoelasticity and thixotropy of blood. Biorheology, 16, 149–162.

    CAS  PubMed  Google Scholar 

  • USAMI S., CHIEN S. and GREGERSEN M.I. (1971). Viscometric Behavior of Young and Aged Erythrocytes. In: Theoretical and Clinical Hemorheology, Hartett H.H. and Copley A.L. (Eds) Springer-Verlag, Berlin, 136–143.

    Google Scholar 

  • VAND V. (1948) Viscosities of solutions and suspensions. J. Phys.Coll. Chem. 52, 277–299.

    CAS  Google Scholar 

  • VINCENT N.M., OLIVER D.R. (1977) Blood sedimentation at controlled shear rates. Biorheology, 14, 51–58.

    CAS  PubMed  Google Scholar 

  • WEINBERGER C.B. and GODDARD J.D. (1974) Extensional flow behaviour of Polymer solutions and particle suspensions in a spinning motion. Intern. J. Multiphase Flow, 1, 465–486.

    Google Scholar 

  • WHITMORE R.L. (1967). A theory of blood flow in small vessels. J. Appt. Physiol., 22, 767–771.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Wien

About this chapter

Cite this chapter

Quemada, D. (1983). Blood Rheology and Its Implication in Flow of Blood. In: Rodkiewicz, C.M. (eds) Arteries and Arterial Blood Flow. International Centre for Mechanical Sciences, vol 270. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4342-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4342-1_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81635-6

  • Online ISBN: 978-3-7091-4342-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics