Skip to main content

Interacting Laminar and Turbulent Boundary Layers

  • Conference paper
Recent Advances in Boundary Layer Theory

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 390))

Abstract

This chapter deals with the properties of viscous wall layers in the high Reynolds number limit which are subjected to rapid changes of the boundary conditions. Classical, e.g. hierarchical boundary layer theory in which the driving pressure is imposed by the external inviscid flow then typically leads to difficulties which often can be overcome by an interaction strategy. Examples include flows past bodies of finite length and shock boundary layer interactions. The interaction concept is formulated first for laminar flows but extended later also to the case of turbulent boundary layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ackeret, J., Feldmann, F. and Rott, N. (1946) Untersuchung an Verdichtungsstößen in schnell bewegten Gasen. Mitteilungen aus dem Institut für Aerodynamik der ETH Zürich, Nr. 10.

    Google Scholar 

  • Adamson, T.C.Jr. and Feo, A. (1975) Interaction between a shock wave and a turbulent boundary layer in transonic flow. SIAM J. Appl. Math. 29, 121–145.

    ADS  MATH  Google Scholar 

  • Adamson, T.C.Jr. and Messiter, A.F. (1977) Normal Shock Wave-Turbulent Boundary Layer Interactions in Transonic Flow near Separation. in: Transonic Flow Problems in Turbomachinery, (eds.: T.C. Adamson, Jr. and M.F. Platzer), Hemisphere Publ. Co., 392–414.

    Google Scholar 

  • Adamson, T.C.Jr. and Messiter, A.F. (1980) Analysis of two-dimensional interactions between shock waves and boundary layers. Ann. Rev. Fluid Mech. 12, pp. 103–138.

    ADS  MathSciNet  Google Scholar 

  • Agrawal, S. and Messiter, A.F. (1984) Turbulent boundary layer interaction with a shock wave at a compression corner. J. Fluid Mech. 143, 23–46.

    ADS  MATH  Google Scholar 

  • Alber, I.E. (1980) Turbulent Wake of a Thin, Flat Plate. AIAA J. 18, 1044–1051.

    ADS  MATH  MathSciNet  Google Scholar 

  • Andreopoulos, J. and Bradshaw, P. (1980) Measurements of interacting turbulent shear layers in the near wake of a flat plate. J. Fluid Mech. 100, 639–668.

    ADS  Google Scholar 

  • Bippes, H. and Turek, M. (1984) Oil flow patterns of separated flow on a hemisphere-cylinder at incidence. DFVLR FB 84–20.

    Google Scholar 

  • Bodonyi, R.J. and Kluwick A. (1977) Freely interacting transonic boundary layers. Phys. Fluids 20, 1432–1437.

    ADS  MATH  MathSciNet  Google Scholar 

  • Bodonyi, R.J. and Kluwick A. (1982) Supercritical transonic trailing-edge flow. Q. J. Mech. Appl. Math. 35, 265–277.

    MATH  Google Scholar 

  • Bodonyi, R.J. (1979) Transonic laminar boundary-layer flow near convex corners. Q. J. Mech. Appl. Math. 22, 63–71.

    MathSciNet  Google Scholar 

  • Bodonyi, R.J., Smith, F.T. and Kluwick, A. (1985) Axisymmetric flow past a slender body of finite length. Proc. R. Soc. Lond. A 400, 37–54.

    ADS  MATH  MathSciNet  Google Scholar 

  • Bodonyi, R.J. and Smith, F.T. (1986) Shock-wave laminar boundary-layer interaction in supercritical transonic flow. Computers and Fluids 14, 97–108.

    MATH  MathSciNet  Google Scholar 

  • Bodonyi, R.J. and Kluwick, A. (1997) Transonic Trailing-Edge Flow. Q. J. Mech. Appl. Math. (in press)

    Google Scholar 

  • Bogucz, E.A. and Walker, J.D.A. (1988) The turbulent near wake at a sharp trailing edge. J. Fluid Mech. 196, 555–584.

    ADS  MATH  Google Scholar 

  • Brilliant, H.M. and Adamson, T.C. Jr. (1973) Shock Wave-Boundary Layer Interactions in Laminar Transonic Flow. AIAA Paper 73–239.

    Google Scholar 

  • Brown, S.N. and Stewartson, K. (1970) Trailing edge stall. J. Fluid Mech. 42, 561–584.

    ADS  MATH  Google Scholar 

  • Brown, S.N. and Stewartson, K. (1983) On an integral equation of marginal separation. SIAM J. Appl. Math. 43, 5, 1119–1126.

    MATH  MathSciNet  Google Scholar 

  • Brown, S.N. (1985) Marginal separation of a three-dimensional boundary layer on a line of symmetry. J. Fluid Mech. 158, 95–111.

    ADS  MATH  MathSciNet  Google Scholar 

  • Bush, W.B. and Fendell, F.E. (1972) Asymptotic analysis of turbulent channel and boundary-layer flow. J. Fluid Mech. 56, 657–681.

    ADS  MATH  Google Scholar 

  • Bush, W.B. (1976) Axial incompressible flow past a body of revolution. Rocky Mt. J. Math. 6, 527.

    MATH  MathSciNet  Google Scholar 

  • Cassel, K.W., Ruban, A.I. and Walker, J.D.A. (1995) An instability in supersonic boundary-layer flow over a compression ramp. J. Fluid Mech. 300, 265–285.

    ADS  MATH  Google Scholar 

  • Cebeci, T.C, Stewartson, K. and Brown, S.N. (1983) Nonsimilar boundary layers on the leeside of cones at incidence. Computers and Fluids 11, 175–186.

    MATH  Google Scholar 

  • Chen, H.C. and Patel, V.C. (1987) Laminar Flow at the Trailing Edge of a Flat Plate. AIAA J. 25, 920–928.

    ADS  Google Scholar 

  • Cheng, H.K. (1961) The Shock Layer Concept and Three-Dimensional Hypersonic Boundary Layers. Rep. AF-1285-A-3, Cornell Aeronautical Laboratory.

    Google Scholar 

  • Chernyshenko, S.I. (1988) The asymptotic form of the stationary separated circumfluence of a body at high Reynolds number. Prikl. Matem. Mekh. 52, 958–966.

    MathSciNet  Google Scholar 

  • Chernyshenko, S.I. and Castro, Ian P. (1993) High-Reynolds-number asymptotics of the steady flow through a row of bluff bodies. J. Fluid Mech. 257, 421–449.

    ADS  MATH  Google Scholar 

  • Chevray, R. and Kovasznay, L.S.G. (1969) Tubulence measurements in the wake of a thin flat plate. AIAA J. 7, 1641–1643.

    ADS  Google Scholar 

  • Chow, R. and Melnik, R.E. (1976) Numerical Solutions of Triple-Deck Equations for Laminar Trailing-Edge Stall. Grumman Research Dept. Report RE-526J.

    Google Scholar 

  • Cole, J.D. (1968) Perturbation methods in applied mathematics, Blaisdell Publishing Company.

    MATH  Google Scholar 

  • Cramer, M.S., Park, S.H. and Watson, L. (1997) Numerical Verification of of Scaling Laws for Shock-Boundary Layer Interactions in Arbitrary Gases. J. Fluids Engg. 119, 67–73.

    Google Scholar 

  • Dallmann, U. (1982) Topological structures of three dimensional separations. DFVLR FB 221–82-A07.

    Google Scholar 

  • Daniels, P.G. (1974) Numerical and asymptotic solutions for the supersonic flow near the trailing edge of a flat plate. Q. J. Mech. Appl. Math. 27, 175–191.

    MATH  Google Scholar 

  • Dennis, S.C. (1973) private communication to Melnik, R.E. and Chow, R.

    Google Scholar 

  • Duck, P.W. (1984) The effect of a surface discontinuity on an axisymmetric boundary layer. Q. J. Mech. Appl. Math. 37, 57–74.

    MATH  MathSciNet  Google Scholar 

  • Duck, P.W. and Burggraf, O. (1986) Spectral solutions for three-dimensional triple-deck flow over surface topography. J. Fluid. Mech. 162, 1–22.

    ADS  MATH  MathSciNet  Google Scholar 

  • Duck, P.W. (1989) Three-dimensional marginal separation. J. Fluid Mech. 202, 559–575.

    ADS  MATH  MathSciNet  Google Scholar 

  • Fiddes, S.P. (1980) A theory of separated flow past a slender elliptic cone at incidence. AGARD C-P paper 30, Sept/Oct., Colorado Springs, USA.

    Google Scholar 

  • Gersten, K. (1989) Die Bedeutung der Prandtlschen Grenzschichttheorie nach 85 Jahren. Z. Flugwiss. Weltraumforsch. 13, 209–218.

    MATH  Google Scholar 

  • Gittler, Ph. and Kluwick, A. (1987a) Triple-deck solutions for supersonic flows past flared cylinders. J. Fluid Mech. 179, 469–487.

    ADS  Google Scholar 

  • Gittler, Ph. and Kluwick, A. (1987b) Nonuniqueness of triple-deck solutions for axisymmetric supersonic flow with separation. in: Boundary Layer Separation; IUTAM Symposium London 1986, Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  • Gittler, Ph. and Kluwick, A. (1989) Interacting laminar boundary layers in quasi-two-dimensional flow. Fluid Dynamics Research 5, 29–47.

    ADS  Google Scholar 

  • Gittler, Ph. and Kluwick, A. (1997) Viscous-inviscid interaction on a slender axisymmetric trailing tip flow. Proc. R. Soc. Lond. A 453, 963–982.

    ADS  MATH  MathSciNet  Google Scholar 

  • Glauert, M.B. and Lighthill, M.J. (1955) The axisymmetric boundary layer on a long thin cylinder. Proc. R. Soc. Lond. A 230, 188–203.

    ADS  MATH  MathSciNet  Google Scholar 

  • Goldstein, S. (1930) Concerning some solutions of the boundary-layer equations in hydrodynamics. Proc. Camb. Phil. Soc. 26, 1–30.

    ADS  MATH  Google Scholar 

  • Goldstein, S. (1948) On laminar boundary layer flow near a point of separation. Q. J. Mech. Appl. Math. 1, 43–69.

    MATH  Google Scholar 

  • Gurevich, M.I. (1966) The Theory of jets in an ideal fluid. Pergamon Press.

    Google Scholar 

  • Hackmüller, G. and Kluwick A. (1989) The effect of a surface mounted obstacle on marginal separation. Z. Flugwiss. Weltraumforsch. 13, 365–370.

    Google Scholar 

  • Hackmüller, G. and Kluwick A. (1990) Effects of 3-D surface mounted obstacles on marginal separation, in: Separated Flows and Jets, IUTAM Symposium Novorsi-birsk/USSR, eds. Kozlov, V.V., Dovgal, A.V., Springer-Verlag, Berlin-Heidelberg, 55–65.

    Google Scholar 

  • Hackmüller, G. (1991) Zwei- und dreidimensionale Ablösung von Strömungsgrenzschichten. Dissertation, TU Wien.

    Google Scholar 

  • Hackmüller, G. and Kluwick A. (1991) Marginal Separation in Quasi-two-dimensional Flow, in: Trends in Applications of Mathematics to Mechanics, Part III, eds. Schneider, W., Troger, H., Ziegler, F., Longman Scientific & Technical, England, 143–149.

    Google Scholar 

  • Hakkinen, R.J., Greber I., Trilling, L. and Ababanel, S.S. (1959) The Interaction of an Oblique Shock with a Laminar Boundary Layer. Nat. Aeronaut. Space Admin. Memo 2–18–59W.

    Google Scholar 

  • Herwig, H. (1982) Die Anwendung der asymptotischen Theorie auf laminare Strömungen mit endlichen Ablösegebieten. Z. Flugwiss. Weltraumforsch. 6, 266–279.

    MATH  Google Scholar 

  • Hornung, H.G. and Perry, A.E. (1984) Some aspects of three-dimensional separation, Part I: Streamsurface bifurcation. Z. Flugwiss. Weltraumforsch. 8, 77–78.

    Google Scholar 

  • Horton, H.P. (1971) Adiabatic laminar boundary-layer/shock-wave interactions on flared axisymmetric bodies. AIAA J. 9, 2141–2148.

    ADS  MATH  Google Scholar 

  • Janour, Z. (1951) Resistance of a plate in parallel flow at low Reynolds-numbers. NACA TM 1316.

    Google Scholar 

  • Jobe, C.E. and Burggraf, O.R. (1974) The numerical solution of the asymptotic equations of trailing edge flow. Proc. R. Soc. A. 340, 91–111.

    ADS  MATH  Google Scholar 

  • Karman, Th. von (1930) Mechanische Ähnlichkeit und Turbulenz. Nachr. Ges. Wiss. Göttingen, Math. Phys. Klasse 58, 58–68.

    Google Scholar 

  • Katzer, E. (1989) On the length scales of laminar shock/boundary layer interaction. J. Fluid Mech. 206, 477–496.

    ADS  Google Scholar 

  • Kazakia, He.J. and Walker, J.D. (1995) An asymptotic two-layer model for supersonic turbulent boundary layers. J. Fluid Mech. 295, 159–198.

    ADS  MATH  Google Scholar 

  • Kirchhoff, G. (1869) Zur Theorie freier Flüssigkeitsstrahlen. J. reine angew. Math. 70, 289.

    MATH  Google Scholar 

  • Kluwick, A. (1979) Stationäre, laminare wechselwirkende Reibungsschichten. Z. Flugwiss. Weltraumforsch. 3, 157–174.

    MATH  Google Scholar 

  • Kluwick, A. (1985) On the nonlinear disortion of waves generated by interacting supersonic boundary layers. Acta Mechanica 55, 177–189.

    MathSciNet  Google Scholar 

  • Kluwick, A. (1989) Marginal separation of laminar axisymmetric boundary layers. Z. Flugwiss. Weltraumforsch. 13, 254–259.

    Google Scholar 

  • Kluwick, A. (1994) Interacting laminar boundary layers in dense gases. Acta Mechanica [Suppl.] 4, 335–349.

    Google Scholar 

  • Kluwick, A. (ed.) (1991) Nonlinear Waves in Real Fluids. Springer-Verlag, Wien-Heidelberg-New York.

    MATH  Google Scholar 

  • Kluwick, A. and Reiterer, M. (1998) On Three-dimensional Marginal Separation, To appear in ZAMM.

    Google Scholar 

  • Kluwick, A. and Stross, N. (1984) Interaction between a weak oblique shock wave and a turbulent boundary layer in purely supersonic flow. Acta Mechanica 53, 37–56.

    Google Scholar 

  • Kluwick, A. and Wohlfart, H. (1984) Entry flow in weakly curved ducts. Ingenieur-Archiv 54, 107–120.

    ADS  MATH  Google Scholar 

  • Kluwick, A. and Wohlfahrt, H. (1986) Hot-wire-anemometer study of the entry flow in a curved duct. J. Fluid Mech. 165, 335–353.

    ADS  Google Scholar 

  • Kluwick, A., Gittler, Ph. and Bodonyi, R.J. (1984) Viscous-inviscid interactions on axisymmetric bodies of revolution in supersonic flow. J. Fluid Mech. 140, 281–301.

    ADS  MATH  Google Scholar 

  • Kluwick, A., Gittler, Ph. and Bodonyi, R.J. (1985) Freely interacting axisymmetric boundary layers on bodies of revolution. Q. J. Mech. Appl. Math. 38, 575–588.

    MATH  MathSciNet  Google Scholar 

  • Kluwick, A., Gittler, Ph. and Bodonyi, R.J. (1994) Viscous-inviscid laminar interaction near the trailing tip of an axisymmetric body, in: Advances in Analytical Methods in Modeling of Aerodynamic Flows, Walker, J.D.A.; Burnett, M.; Smith, F.T. eds, American Institute of Aeronatuics and Astronautics.

    Google Scholar 

  • Kluwick, A., Reiterer, M. and Hackmüller, G. (1997) Marginal separation caused by three-dimensional surface mounted obstacles. Proc. of the 2nd International Conference on Asymptotics in Mechanics, St. Petersburg 1996, pp. 113–120.

    Google Scholar 

  • Korolev, G.L. (1980) Numerical solution to the asymptotic problem of separation of a laminar boundary layer from a smooth surface. Uch. Zap. TsAGI, 11, 27.

    MathSciNet  Google Scholar 

  • Korolev, G.L. (1983) Flow in the neighbourhood of the trailing edge of a plate in a transonic flow of viscous gas. Fluid Dynamics 18, 355–360.

    ADS  MATH  Google Scholar 

  • Korolev, G.L. (1989) Contribution to the theory of thin profile trailing edge separation. Izv. Akad. Nauk. SSSR, Mekh. Zhidk. Gaza 4, 55–59.

    Google Scholar 

  • Korolev, G.L. and Sychev, Vik.V. (1993) Asymptotic theory of the flow near the rear end of a slender axisymmetric body. Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 5, 68–77.

    MathSciNet  Google Scholar 

  • Leblanc, R. and Ginoux, J. (1970) Influence of cross flow on two dimensional separation. Von Karman Institute for Fluid Dynamics, TN 62.

    Google Scholar 

  • Legendre, R. (1956) Séparation de l’ecoulement laminaire tridimensionnel. La Recherche Aéronautique No 54, 3–8.

    Google Scholar 

  • Lighthill, M.J. (1953) On boundary layers and upstream influence II. Supersonic flows without separation. Proc. R. Soc. A 217, 478–507

    ADS  Google Scholar 

  • Lighthill, M.J. (1963) Attachement and separation in three-dimensional flow, in: Laminar boundary layers (ed.: L. Rosenhead), 72–82, Oxford Univ. Press, Oxford 1963.

    Google Scholar 

  • Liou, M.S. and Adamson, F.C. Jr. (1980) Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part II: Wall shear stress, ZAMP 31, 227–246.

    ADS  MATH  Google Scholar 

  • Maise, G. and McDonald, H. (1968) Mixing Length and Kinematic Eddy Viscosity in a Compressible Boundary Layer. AIAA J. 6, 73–80.

    ADS  Google Scholar 

  • McLachlan, R.I. (1991) The boundary layer in a finite plat plate. Phys. Fluids A 3, 341–348.

    ADS  MATH  Google Scholar 

  • Mellor, G.L. and Gibson, D.M. (1966) Equilibrium turbulent boundary layers. J. Fluid Mech. 10, 225–253.

    ADS  Google Scholar 

  • Mellor, G.L. (1972) The large Reynolds number asymptotic theory of turbulent boundary layers. Int. J. Engr. Sci. 10, 851–873.

    MathSciNet  Google Scholar 

  • Melnik, R.E. (1978) Wake curvature and trailing edge interaction effects in viscous flow over airfoils. Advances Technology Airfoil Research Conference, NASA CP-2045, Part I.

    Google Scholar 

  • Melnik, R.E. (1980) Turbulent interactions on airfoils at transonic speeds — recent developments. AGARD CP-291: Computations of viscous-inviscid interactions, paper No. 10.

    Google Scholar 

  • Melnik, R.E. and Grossman, B. (1974) Analysis of the Interaction of a Weak Normal Shock Wave with a Turbulent Boundary Layer. AIAA Paper No. 74–598.

    Google Scholar 

  • Melnik, R.E. and Chow, R. (1975) Asymptotic Theory of Two Dimensional Trailing Edge Flows. NASA SP-347.

    Google Scholar 

  • Melnik, R.E. and Grossman, B. (1976) Further developments in an analysis of the interaction of a weak normal shock wave with a turbulent boundary layer. Symposium Transsonicum II, (eds.: K. Oswatitsch and D. Rues), Springer-Verlag, 262–272.

    Google Scholar 

  • Melnik, R.E., Chow, R. and Mead, H.R. (1977) theory of Viscous Transonic Flow Over Airfoils at High Reynolds Number. AIAA Paper No. 77–680.

    Google Scholar 

  • Melnik, R.E., Chow, R., Mead, H.R. and Jameson, A. (1985) An Improved Vis-cid/Inviscid Interaction Procedure for Transonic Flow Over Airfoils. NASA Contractor Report 3805.

    Google Scholar 

  • Melnik, R.E., Siclari, M.J. and Cusic, R.L. (1985) An Asymptotic Theory of Supersonic Turbulent Interactions in a Compression Corner. Grumman Research Department Report RE-711.

    Google Scholar 

  • Messiter, A.F. (1970) Boundary layer flow near the trailing edge of a flat plate. SIAM J. Appl. Math. 18, 241–257.

    MATH  Google Scholar 

  • Messiter, A.F., Feo, A. and Melnik, R.E. (1971) Shock-wave strength for separation of a laminar boundary layer at transonic speeds. AIAA J. 9, 1197–1198.

    ADS  Google Scholar 

  • Messiter, A.F. (1980a) Asymptotic Theory of Turbulent Boundary-Layer Interactions. 4th Canadian Symposium on Fluid Dynamics, Calgary, June 9–12.

    Google Scholar 

  • Messiter, A.F. (1980b) Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part I: Pressure distribution. ZAMP 31, 204–226.

    ADS  MATH  Google Scholar 

  • Messiter, A.F. (1983) Boundary-layer interaction theory. ASME J. Appl. Mech. 50, 1104–1113.

    ADS  MATH  Google Scholar 

  • Moore, F.K. (1953) Laminar boundary layer on cone in supersonic flow at large angle of attack. NACA Rept. No. 1132.

    Google Scholar 

  • Murdock, J.W. (1972) The solution of sharp-cone boundary-layer equations in the plane of symmetry. J. Fluid Mech. 54, 665–678.

    ADS  MATH  Google Scholar 

  • Neiland, V.Ya (1969) Towards a theory of separation of the laminar boundary layer in a supersonic stream. Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 4.

    Google Scholar 

  • Neiland, V.Ya (1981) Asymptotic theory of the separation and the boundary layer supersonic gas flow interaction. Advances in Mechanics 4, 1–62.

    Google Scholar 

  • Oswatitsch, K. and Wieghardt, K. (1941) Theoretische Untersuchungen über stationäre Potentialströmungen und Grenzschichten. Bericht der Lilienthal- Gesellschaft für Luftfahrtforschung.

    Google Scholar 

  • Oswatitsch, K. (1958) Die Ablösebedingungen von Grenzschichten. In Grenzschichtforschung (ed. H. Görtier). IUTAM Symposium, Freiburg 1957, 357–367. Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  • Park, S.H. (1994) Viscous-Inviscid Interactions in Dense Gases. Ph. D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

    Google Scholar 

  • Perry, A.E. and Chong, M.S. (1986) A Series-Expansion Study of the Navier-Stokes Equations with Applications to Three-Dimensional Separation Patterns. J. Fluid Mech. 173, 207–223.

    ADS  MATH  MathSciNet  Google Scholar 

  • Pot, P.J. (1979) Measurements in a 2D wake and in a 2D wake merging into a boundary layer. Rep. NLR TR 79063 U. National Aerospace Laboratory NLR, Netherlands.

    Google Scholar 

  • Prandtl, L. (1904) Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandl. d. III. Intern. Mathem. Kongresses, Heidelberg, 484–491.

    Google Scholar 

  • Prandtl, L. (1933) Neuere Ergebnisse der Turbulenzforschung. Z. VDI 77, 105–114.

    Google Scholar 

  • Ramaprian, B.R., Patel, V.C. and Sastry, M.S. (1981) Turbulent wake development behind streamlined bodies. Iowa Institute of Hydraulic Research Rep. 231. University of Iowa, Iowa City.

    Google Scholar 

  • Riley, N. (1979) Separation from a smooth surface in a slender conical flow. J. Eng. Math., 13, 75–91.

    MATH  MathSciNet  Google Scholar 

  • Rizzetta, D.P., Burggraf, O.R. and Jenson, R. (1978) Triple-deck solutions for viscous supersonic and hypersonic flow past corners. J. Fluid Mech. 89, 535–552.

    ADS  Google Scholar 

  • Robinson, J.L. (1969) Similarity solutions in several turbulent shear flows. Rep. 1242. National Physical Laboratory, Teddington, UK.

    Google Scholar 

  • Roux, B. (1972) Supersonic laminar boundary layer near the plane of symmetry of a cone at incidence. J. Fluid Mech 51, 1–14.

    ADS  MATH  Google Scholar 

  • Rubin, S.G., Lin, T.C. and Tarulli, F. (1977) Symmetry Plane Viscous Layer on a Sharp Cone. AIAA J. 15, 204–211.

    ADS  MATH  Google Scholar 

  • Ruban, A.I. (1978) Numerical solution of the local asymptotic problem of the unsteady separation of a laminar boundary layer in a supersonic flow. USSR Comput. Maths Math. Phys. 18, 175–187.

    MathSciNet  Google Scholar 

  • Ruban, A.I. (1981a) Singular solution of boundary layer equations which can be extended continously throug the point of zero surface friction. Izv. Akad. Nauk. SSSR, Mekh. Zhidk. Gaza 6, 42–52.

    MathSciNet  Google Scholar 

  • Ruban, A.I., (1981b) Asymptotic theory of short separation regions on the leading edge of a slender airfoil. Izv. Akad. Nauk. SSSR, Mekh. Zhidk. Gaza 1, 42–51.

    MathSciNet  Google Scholar 

  • Smith, F.T. and Duck, P. (1977) Separation of jets on thermal boundary layers from a wall. Q. J. Mech. Appl. Math. 30, 143–156.

    MATH  MathSciNet  Google Scholar 

  • Smith, F.T., Sykes, R.I. and Brighton, P.W.M. (1977) A two-dimensional boundary layer encountering a three-dimensional hump. J. Fluid Mech. 83, 163–176.

    ADS  MATH  Google Scholar 

  • Smith, F.T. (1977) The laminar separation of an imcompressible fluid streaming past a smooth surface. Proc. R. Soc. Lond. A 356, 433–463.

    ADS  Google Scholar 

  • Smith, F.T. (1978) Three-dimensional viscous and inviscid separation of a vortex sheet from a smooth non-slender body. RAE TR 78095, 33.

    Google Scholar 

  • Smith, F.T. (1979) Laminar flow of an incompressible fluid past a bluff body: the separation, reattachement, eddy properties and drag. J. Fluid Mech. 92, 171–205.

    ADS  MATH  Google Scholar 

  • Smith, F.T. (1982) On the high Reynolds number theory of laminar flows. IMA J. of Appl. Maths. 28, 207–281.

    ADS  MATH  Google Scholar 

  • Smith, F.T. and Merkin, J.H. (1982) Triple deck solutions for subsonic flow past humps, steps, concave or convex corners, and wedged trailing edges. Computers and Fluids 10, 7–25.

    MATH  MathSciNet  Google Scholar 

  • Smith, F.T. (1983) Interacting flow and trailing edge separation — no stall. J. Fluid Mech. 131, 219–249.

    ADS  MATH  Google Scholar 

  • Smith, F.T. (1985) A structure of laminar flow past a bluff body at high Reynolds number. J. Fluid Mech. 155, 175–191.

    ADS  MATH  Google Scholar 

  • Smith, F.T. (1987) Theory of High-Reynolds-Number Flow past a Blunt Body, in: Studies of Vortex Dominated Flows, (eds.: M.Y. Hussaini and M.D. Salas), Springer-Verlag. 87–107.

    Google Scholar 

  • Smith, F.T. (1988) A reversed-flow singularity in interacting boundary layers. Proc. R. Soc. Lond. A 420, 21–52.

    ADS  MATH  Google Scholar 

  • Smith, F.T. and Khorrami A. Farid (1991) The interactive breakdown in supersonic ramp flow. J. Fluid Mech. 224, 197–215.

    ADS  MATH  MathSciNet  Google Scholar 

  • Smith, J.H.B. (1977) Behaviour of a vortex sheet separating from a smooth surface, RAE TR 77058, 1–62.

    Google Scholar 

  • Stewartson, K. (1955) The asymptotic boundary layer on a circular cylinder in axial incompressible flow. Q. appl. Math. 13, 113–122.

    MATH  MathSciNet  Google Scholar 

  • Stewartson, K. (1969) On the flow near the trailing edge of a flat plate II. Mathematika 16, 106–121.

    MATH  Google Scholar 

  • Stewartson, K. and Williams, P.G. (1969) Self-induced separation. Proc. Roy. Soc. A 312, 181–206.

    ADS  MATH  Google Scholar 

  • Stewartson, K. (1970) On laminar boundary layers near corners. Q. J. Mech. Appl. Math 23, 137–152.

    MATH  Google Scholar 

  • Stewartson, K. (1970) Is the singularity at separation removeable. J. Fluid Mech. 44, 347–367.

    ADS  MATH  Google Scholar 

  • Stewartson, K. (1971) Corrections and an addition. Q. J. Mech. Appl. Math 24, 387–389.

    MATH  Google Scholar 

  • Stewartson, K. (1974) Multistructured boundary layers on flat plates and related bodies. Advances in Appl. Mech. 14, 145–139.

    Google Scholar 

  • Stewartson, K., Cebeci, T.C. and Chang, K.C. (1980) A boundary-layer collision in a curved duct. Q. J. Mech. Appl. Math 33, 59–75.

    MATH  MathSciNet  Google Scholar 

  • Stewartson, K., Smith, F.T. and Kaups, K. (1982) Marginal separation. Stud. Appl. Math. 67, 45–61.

    MATH  MathSciNet  Google Scholar 

  • Stewartson, K. and Simpson, C.J. (1982) On a singularity initiating a boundary-layer collision. Q. J. Mech. Appl. Math 35, 1–16.

    MATH  MathSciNet  Google Scholar 

  • Sychev, V.V. (1972) Concerning laminar separation. Izv. Akad. Nauk. SSSR, Mekh. Zhidk Gaza 3, 47–59.

    Google Scholar 

  • Sychev, V.V, Ruban, A.I., Sychev, Vik.V. and Korolev, G.I. (1987) Asymptotic theory of separating flows. Nauka.

    Google Scholar 

  • Sychev, Vik.V. (1990) Flow near the rear end of a slender body. Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 5, 10–18.

    ADS  MathSciNet  Google Scholar 

  • Sychev, Vik.V. (1991) Asymptotic theory of a flow near the trailing tip of a slender axisymmetric body. In: Separated Flows and Jets. IUTAM Symposium Novosibirsk/USSR 1990, eds. Kozlov, V.V., Dovgal A.V., Springer-Verlag, Berlin-Heidelberg-New-York.

    Google Scholar 

  • Sykes, R.I. (1980a) On the three-dimensional boundary layer flow over surface irregularities. Proc. R. Soc. Lond. A 373, 311–329.

    ADS  MATH  MathSciNet  Google Scholar 

  • Sykes, R.I. (1980b) An asymptotic theory of incompressible turbulent boundary-layer flow over a small hump. J. Fluid Mech. 101, 647–670.

    ADS  MATH  MathSciNet  Google Scholar 

  • Taganov, G.I. (1968) Contribution to the theory of stationary separation zones. Fluid Dyn. 3, 1–11.

    ADS  Google Scholar 

  • Taganov, G.I. (1970) On limiting flows of a viscous fluid with stationary separation for Re → ∞. Uch. Zap. TsAGI 1, 1–14.

    Google Scholar 

  • Timoshin, S.N. (1985) Laminar flow in the vicinity of a surface slope discontinuity on an elongated body of revolution. Utschenic Zapiski Tsagi 16, 10–21.

    ADS  Google Scholar 

  • Timoshin, S.N. (1986) Interaction between the boundary layer on an elongated body of revolution and the external flow. Utschenic Zapiski Tsagi 17, 33–41.

    ADS  Google Scholar 

  • Van Driest, E.R. (1951) Turbulent Boundary Layer in Compressible Fluids. J. Aero. Sci. 18, 145–160.

    MATH  Google Scholar 

  • Vatsa, V. and Werle, M. (1977) Quasi-three-dimensional laminar boundary layer separations in supersonic flow. Trans. ASME J. Fluid Eng. 99, 634–639.

    Google Scholar 

  • Veldman, A.E.P. and Van de Vooren A.I. (1975) Drag of a Finite Flat Plate. Lecture notes in Physics 35, 423–430, Springer-Verlag, Berlin-Heidelberg- New York.

    Google Scholar 

  • Wang, K.C. (1971) On the determination of zones of influence and dependence for three-dimensional boundary-layer equations. J. Fluid Mech. 48, 397–404.

    ADS  MATH  Google Scholar 

  • Whitlock, S.T. (1992) Compressible Flows of Dense Gases. M.S. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

    Google Scholar 

  • Yajnik, K. (1970) Asymptotic theory of turbulent shear flows. J. Fluid Mech. 42, 411–427.

    ADS  MATH  Google Scholar 

  • Zametaev, V.B. (1986) Singular solution of equations of a boundary layer on a slender cone. Izv. Akad. Nauk SSSR, Mekh. Zhid Gaza 2, 65–72.

    Google Scholar 

  • Zametaev, V.B. (1987) Local separation on a slender cone preceding the appearance of a vortex sheet. Izv. Akad. Nauk SSSR, Mekh. Zhid Gaza 6, 21–28.

    Google Scholar 

  • Zametaev, V.B. (1989) Formation of singularities in a three-dimensional boundary layer. Izv. Akad. Nauk. SSR. Mekh. Zhidk. Gaza 58–64.

    Google Scholar 

  • Zametaev, V.B. and Sychev, Vik.V (1995) Three-dimensional separation in the neighbourhood of roughness on the surface of an axisymmetric body. Fluid Dynamics 30, 387–398.

    ADS  MATH  MathSciNet  Google Scholar 

  • Zieher, F. (1993) Laminare Grenzschichten in schweren Gasen. M.S. Thesis Technical University of Vienna.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Kluwick, A. (1998). Interacting Laminar and Turbulent Boundary Layers. In: Kluwick, A. (eds) Recent Advances in Boundary Layer Theory. CISM International Centre for Mechanical Sciences, vol 390. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2518-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2518-2_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83136-6

  • Online ISBN: 978-3-7091-2518-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics