Skip to main content

Abstract

The previous Chapter, which dealt with the various types of waves that can occur in a solid body, in all cases made use of some form of Hooke’s law—that is, it always involved proportionality between stress and strain. Hooke’s law, like most laws of physics, is exact only for ideal situations, which represent limiting conditions for practical situations. For the topics treated in the previous Chapter, the deviations from Hooke’s law exhibited by actual structures are unimportant. But, for example, in relation to processes that take place over relatively long times, one finds that the relations derived in the previous Chapter are unsatisfactory; although it is evident even from cursory observation that every oscillation decays with space and time, the previously derived relations (for example, Eqs. (II, 11) and (II, 12)) imply that a motion continues forever once it has been started.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Damping“ and ”dissipation“ usually refer only to conversion of mechanical energy into heat. These terms are generally not applied to energy losses that occur as a result of reflection at discontinuities (see Chapter V), which process is usually described as ”attenuation“.

    Google Scholar 

  2. Meyer, 0. E.: J. reine u. angewandte Math. 78 (1874) 130–135.

    MATH  Google Scholar 

  3. Boltzmann, L.: Ann. Physik, Erg. Bd. 7 (1876) 624–654.

    Google Scholar 

  4. For molecular vibrations, these times obviously are very short, but the times r corresponding to changes in molecular structure may be very long. Relaxation times may be of the order of hours and days, but also of the order of nanoseconds.

    Google Scholar 

  5. Tamm, K., Weis, O.: Acustica 9 (1959) 275.

    Google Scholar 

  6. Weis, O.: Acustica 9 (1959) 387.

    MathSciNet  Google Scholar 

  7. Cremer, L.: Sitz. Ber. der Preuss. Akademie d. Wissenschaften, phys.-math. K1., 1934, I, p. 1.

    Google Scholar 

  8. See for example Mason, W. P.: Physical Acoustics and the Properties of Solids, Van Nostrand 1958.

    Google Scholar 

  9. Oberst, H., Frankenfeld, K.: Acustica (Beihefte) 2 (1952) 181.

    Google Scholar 

  10. Oberst, H., Becker, G. W., Frankenfeld, K.: Acustica (Beihefte) 4 (1954) 433.

    Google Scholar 

  11. Zener, C.: Elasticity and Anelasticity of Metals, University Chicago Press, 1953.

    Google Scholar 

  12. Truell, R., Elbaum, C.: High Frequency Ultrasonic Stress Waves, in: Handbuch der Physik (ed. S. Flügge), Bd. XI, 2, Springer: Berlin 1961.

    Google Scholar 

  13. Love, A. E. H.: A Treatise on the Mathematical Theory of Elasticity, S. 119, Dover Publication (1948).

    Google Scholar 

  14. Lucke, K.: Die von Kristallbaufehlern, insbesondere von Versetzungen verursachten Dämpfungserscheinungen, Z. Metallkunde 53 (1962) 53.

    Google Scholar 

  15. Bordoni, P. G.: Dislocation, Relaxation at High Frequencies, Nuovo Cimento Suppl. 17 (1960) 43.

    Article  Google Scholar 

  16. Zener, C.: Phys. Rev. 52 (1937) 230.

    Article  ADS  MATH  Google Scholar 

  17. In Chapter II the second derivative of the displacement was used instead of the curvature; see Eqs. (II, 70–74). These two quantities are equal for small deformations. Introduction of tp simplifies the notation and avoids confusion of the displacement with the loss factor, for both of which the symbol n has been used.

    Google Scholar 

  18. Becker, G. W., Oberst, H.: Kolloid Z. 148 (1956) 6.

    Article  Google Scholar 

  19. Linhardt, F., Oberst, H.: Acustica 11 (1961) 255.

    Google Scholar 

  20. Williams, M. L., Landel, R. F., Ferry, J. D.: J. Amer Chem. Soc. 77 (1955)

    Google Scholar 

  21. Heckl, M.: J. Acoust. Soc. Amer. 33 (1961) 640.

    Article  MathSciNet  ADS  Google Scholar 

  22. Goodman, L. E.: A Review of Progress in Analysis of Interfacial Slip Damping, Sec. II, Structural Damping (ed. J. E. Ruzicka ), Amer. Soc. Mech. Engrg., New York 1959.

    Google Scholar 

  23. Ungar, E. E.: 33rd Symposium on Shock, Vibration and Associated Environments, Washington DC 1963.

    Google Scholar 

  24. Maidanik, G.: J. Acoust. Soc. Amer. 40 (1966) 1064.

    Google Scholar 

  25. Ungar, E. E., Carbonell, J.: AIAA Journal 8 (1966) 1386.

    Google Scholar 

  26. Heckl, M.: J. Acoust. Soc. Amer. 34 (1962) 803.

    Article  ADS  Google Scholar 

  27. Schmidt, H.: Acustica 4 (1954) 639.

    Google Scholar 

  28. The horizontal “sand beams” used for these measurements consisted of sand contained in a long trough of plastic film, suspended from strings.

    Google Scholar 

  29. Kurtze, G.: VDI Berichte 8 (1956) 110.

    Google Scholar 

  30. Kuhl, W., Kaiser, H.: Acustica 2 (1952) 179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cremer, L., Heckl, M. (1988). Damping. In: Structure-Borne Sound. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10121-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10121-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10123-0

  • Online ISBN: 978-3-662-10121-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics