Skip to main content

Mesophilic, Autotrophic Bioleaching Bacteria: Description, Physiology and Role

  • Chapter
Biomining

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

Acidophilic bacteria capable of attacking metal sulfides are readily isolated from sites of natural mineral oxidation. These bacteria have been divided according to their preferred temperatures for growth into three groups: mesophiles, moderate thermophiles and extreme thermophiles. The mesophiles are those bacteria with optimum temperatures of between 25°–40°C and are incapable of growth above 45°C. Mesophilic iron- or sulfur-oxidizing bacteria can be further subdivided into those which are obligately autotrophic and those which are also capable of growth on organic compounds.1 The moderate and extreme thermophiles are described in chapter 12 and heterotrophic bacteria isolated from iron- and sulfur-rich environments in chapter 13. This chapter deals primarily with the acidophilic, iron- or sulfur-oxidizing obligately autotrophic bacteria. Good reviews on these bacteria have been published2 4 and this chapter is intended to update and build on these.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kelly DP, Harrison AP. Genus Thiobacillus Beijerinck 1904b, 597. In: Staley JT, Bryant MP, Pfenning N et al, eds. Bergey’s Manual of Systematic Bacteriology. Vol 3. Baltimore: Williams and Wilkins, 1989: 1842–1858

    Google Scholar 

  2. Brierley CL. Bacterial leaching. Crit Rev Microbiol 1978; 6: 207–262

    Article  CAS  Google Scholar 

  3. Lundgren DG, Silver M. Ore leaching by bacteria. Ann Rev Microbiol 1980; 34: 263–283

    Article  CAS  Google Scholar 

  4. Kelly DP, Norris PR, Brierley CL. Microbiolgical methods for the extraction and recovery of metals. In: Bull AT, Ellwood DG, Ratledge C, eds. Microbial Technology: Current State and Future Prospects. Cambridge, UK:Cambridge University Press, 1979:263–308

    Google Scholar 

  5. Norris PR. Acidophilic bacteria and their activity in mineral sulfide oxidation. In: Ehrlich HL, Brierley CL, eds. Microbial Mineral Recovery. New York: McGraw-Hill, 1990: 3–27

    Google Scholar 

  6. Hallberg KB, Lindström EB. Characterization of Thiobacillus caldus sp nov., a moderately thermophilic acidophile. Microbiology 1994; 140: 3451–3456

    Google Scholar 

  7. Goebel BM, Stackebrandt E. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 1994; 60: 1614–1621

    PubMed  CAS  Google Scholar 

  8. Amaro AM, Hallberg K, Lindström EB et al. An immunological assay for detection and enumeration of thermophilic biomining microorganisms. Appl Environ Microbiol 1994; 60:3470–3473

    Google Scholar 

  9. Hallberg KB. PhD dissertation, 1995 University of Umeå, Sweden

    Google Scholar 

  10. Harrison AP. The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Ann Rev Microbiol 1984; 38: 265–292

    Article  CAS  Google Scholar 

  11. Harrison AP. Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans and genomic comparison with Thiobacillus thiooxidans. Arch Microbiol 1982; 131: 68–76

    Article  Google Scholar 

  12. Goebel BM and Stackebrandt E. Molecular analysis of the microbial biodiversity in a natural acidic environment. In: Jerez CA, Vargas T, Toledo H, Wiertz JV, eds. Biohydrometallurgical Processing. Vol II. Santiago: University of Chile Press, 1995: 43–51

    Google Scholar 

  13. Harrison AP, Norris PR. Leptospiriilum ferrooxidans and similar bacteria: some characteristics and genomic diversity. FEMS Microbiol Lett 1985; 30: 99–102

    Google Scholar 

  14. Sand W, Rohde K, Sobotke B et al. Evaluation of Leptospirillum ferrooxidans for leaching. Appl Environ Microbiol 1992; 58: 85–92

    PubMed  CAS  Google Scholar 

  15. Norris PR. Iron and mineral oxidation with Leptospirillum-like bacteria. In: Rossi G, Torma AE, eds. Recent Progress in Biohydrometallurgy. Iglesias: Associazione Mineraria Sarda, 1983: 83–96

    Google Scholar 

  16. Rawlings DE. Unpublished observations

    Google Scholar 

  17. Tuovinen OH, Niemelä SI, Gyllenberg HG. Effect of mineral nutrients and organic substances on the development of Thiobacillus ferrooxidans. Biotechnol Bioeng 1971; 13: 517–527

    Article  CAS  Google Scholar 

  18. Lane DJ, Stahl DA, Olsen GJ et al. Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by 5S rRNA sequences. J Bacteriol 1985; 163: 75–81

    PubMed  CAS  Google Scholar 

  19. Lane DJ, Harrison AP, Stahl DA et al. Evolutionary relationships amoung sulfur-and iron-oxidizing eubacteria. J Bacteriol 1992; 174: 269–278

    PubMed  CAS  Google Scholar 

  20. Karlin S, Weinstock GM, Brendel V. Bacterial classifications derived from recA protein sequence comparisions. J Bacteriol 1995; 177: 6881–6893

    PubMed  CAS  Google Scholar 

  21. Karlin S, Brocchieri L. Evolutionary conservation of RecA genes in relation to protein structure and function. J Bacteriol 1996; 178: 1881–1894

    PubMed  CAS  Google Scholar 

  22. Brown LD and Rawlings DE. A comparison of the structure of the H+-translocating ATP synthase from Thiobacullus ferrooxidans with those of other organisms. In: Torma AE, Apel ML, Brierley CL, eds. Biohydrometallurgical Technologies. Vol II. Warrendale, Pennsylvania. TMS Press, 1993: 519–528

    Google Scholar 

  23. Amann RI, Ludwig W, Schleifer K-H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 1995; 59: 143–169

    Google Scholar 

  24. Barros MEC, Rawlings DE, Woods DR. Mixotrophic growth of a Thiobacillus ferrooxidans strain. Appl Environ Microbiol 1984; 593-595

    Google Scholar 

  25. Holuigue L, Herrera L, Phillips OM et al. CO2 fixation by mineral-leaching bacteria: characteristics of the ribulose bisphosphate carboxylase-oxygenase of Thiobacillus ferrooxidans. Biotechnol Appl Biochem 1987; 9: 497–505

    Google Scholar 

  26. Kelly DP, Jones CA. Factors affecting metabolism and ferrous iron oxidation in suspensions and batch cultures of Thiobacillus ferrooxidans: relevance to ferric iron leach solution regeneration. In: Murr LE, Brierley JA, Torma AE, eds. Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena. New York: Academic Press. 1978: 19–44

    Chapter  Google Scholar 

  27. Norris PR. Factors affecting bacterial mineral oxidation: the example of carbon dioxide in the context of bacterial diversity. In: Salley J, McCready RGL, Wichlacz PL, eds. Biohydrometallurgy-1989 Ottawa:CANMET 1989: 1–14

    Google Scholar 

  28. Kusano T, Takeshima T, Inoue, C et al. Evidence for two sets of structural genes coding for ribulose biphosphate carboxylase in Thiobacillus ferrooxidans. J Bacteriol 1991; 173: 7313–7323

    PubMed  CAS  Google Scholar 

  29. Kusano T, Sugawara K. Specific binding of Thiobacillus ferrooxidans RbcR to the intergenic sequence between the rbc operon and the rbcR gene. J Bacteriol 1993; 175: 1019–1025

    Google Scholar 

  30. Mackintosh ME. Nitrogen fixation by Thiobacillus ferrooxidans. J Gen Microbiol 1978; 34: 263–283

    Google Scholar 

  31. Pretorius I-M, Rawlings DE, Woods DR. Indentification and cloning of Thiobacillus ferrooxidans structural nifNDK genes in Escherichia coli. Gene 1985; 45: 59–65

    Google Scholar 

  32. Pretorius I-M, Rawlings DE, O’Neill EG et al. Nucleotide sequence of the gene encoding the nitrogenase protein of Thiobacillus ferrooxidans. J Bacteriol 1997; 169: 367–370

    Google Scholar 

  33. Norris PR, Murrell JC, Hinson D. The potential for diazotrophy in iron-and sulfur-oxidizing acidophilic bacteria. Arch Microbiol 1995; 164: 294–300

    Google Scholar 

  34. Lawson EN. Unpubublished observations

    Google Scholar 

  35. Blake RC, Shute EA, Waskovsky J, Harrison AP. Respiratory components in acidophilic bacteria that respire on iron. Geomicrobiol J 1992; 10: 173–192

    Article  CAS  Google Scholar 

  36. Blake RC, Shute EA, Greenwood MM et al. Enzymes of aerobic respiration on iron. FEMS Microbiol Rev 1993; 11: 9–18

    Google Scholar 

  37. Blake RC, McGinness S. Electron-transfer proteins of bacteria that respire on iron. In: Torma AE, Apel ML, Brierley CL, eds. Biohydrometallurgical Technologies. Vol II. Warrendale, Pennsylvania: TMS Press, 1993; 616–628

    Google Scholar 

  38. Yamanaka T, Fukumori Y. Molecular aspects of the electron transfer system which participtes in the oxidayion of ferrous iron by Thiobacillus ferrooxidans. FEMS Microbiol Rev 1995; 17:401–413

    Google Scholar 

  39. Mjoli N, Kulpa CF. The identification of a unique outer membrane protein required for iron oxidation in Thiobacillus ferrooxidans. In: Biohydrometallurgy, Norris PR, Kelly DP, eds. Kew Surrey: Science and Technology Letters, 1988: 89–102

    Google Scholar 

  40. Ronk M, Shively JE, Shute EA et al. Amino acid sequence of the blue copper protein rusticyanin from Thiobacillus ferrooxidans Biochemistry 1931; 30:9435–9442

    Google Scholar 

  41. Nunzi F, Woudstra M, Campèse D et al. Amino acid sequence of rusticycanin from Thiobacillus ferrooxidans and its comparison with other blue copper proteins. Biochim Biophys Acta 1993; 1162:28–34

    Google Scholar 

  42. Kusano T, Takeshima C, Sugawara K et al. Molecular cloning of the gene encoding Thiobacillus ferrooxidans Fe(II) oxidase. J Biol Chem 1992; 267: 11242–11247

    PubMed  CAS  Google Scholar 

  43. Blake RC, Shute EA. Respiratory enzymes of Thiobacillus ferrooxidans Kinetic properties of an acid stable iron:rusticyanin oxidoreductase. Biochemistry 1994; 33:9220–9228

    Google Scholar 

  44. Norris PR, Barr DW, Hinson D. Iron and mineral oxidation by acidophilic bacteria: affinities for iron and attachment to pyrite. In: Biohydrometallurgy, Norris PR, Kelly DP, eds. Kew Surrey: Science and Technology Letters, 1988:43–59

    Google Scholar 

  45. Helle U, Onken U. Continuous bacterial leaching of a pyritic flatation concentrate by mixed cultures. In: Biohydrometallurgy, Norris PR, Kelly DP, eds. Kew Surrey: Science and Technology Letters, 1988: 61–75

    Google Scholar 

  46. Pronk JT, Meulenberg R, Hazeu W et al. Oxidation of reduced sulfur compounds by acidophilic thiobacilli. FEMS Microbiol Rev 1990; 75: 293–306

    Google Scholar 

  47. Kuenen JG, Pronk JT, Hazeu W et al. A review of bioenergetics and enzymology of sulfur compound oxidation by acidophilic thiobacilli. In: Torma AE, Apel ML, Brierley CL, eds. Biohydrometallurgical Technologies. Vol II. Warrendale, Pennsylvania: TMS Press, 1993: 487–505

    Google Scholar 

  48. Sugio T, Domatsu C, Munakata O et al. Role of a ferric ion-reducing system in sulfur oxidation of Thiobacillus ferrooxidans. Appl Environ Microbiol 1985; 49a401–1406

    Google Scholar 

  49. Sugio T, White KJ, Shute E et al. Existence of a hydrogen sulfide:ferric ion oxidoreductase in iron-oxidizing bacteria. Appl Environ Microbiol 1992; 58:431–433

    Google Scholar 

  50. Suzuki H, Tanaka T, Tano T et al. Existence of sulfide binding protein in iron-oxidizing bacteria. In: Torma AE, Apel ML, Brierley CL, eds. Biohydrometallurgical Technologies. Vol II. Warrendale, Pennsylvania: TMS Press, 1993:423–431

    Google Scholar 

  51. Sugio T, Tanaka K, Matsugi S et al. Purification and some properties of NADHdependent sulfite reductase from Thiobacillus ferrooxidans. In: Jerez CA, Vargas T, Toledo H, Wiertz JV, eds. Biohydrometallurgical Processing. Vol II. Santiago: University of Chile Press, 1995: 109–117

    Google Scholar 

  52. Pronk JT, Meijer WM, Hazeu W et al. Growth of Thiobacillus ferrooxidans on formic acid. Appl Environ Microbiol 1991; 57: 2057–2062

    PubMed  CAS  Google Scholar 

  53. Alexander B, Leach S, Ingledew WI. The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans. J Gen Microbiol 1987; 133x171–1179

    Google Scholar 

  54. Drobner E, Huber H, Stetter KO. Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl Environ Microbiol 1990; 56: 2922–2923

    PubMed  CAS  Google Scholar 

  55. DiSpirito AA, Tuovinen OH. Uranous ion oxidation and carbon dioxide fixation by Thiobacillus ferrooxidans. Arch Microbiol 1982; 133: 28–32

    Article  CAS  Google Scholar 

  56. Nielsen AM, Beck JV. Chalcocite oxidation and coupled carbon dioxide fixation by Thiobacillus ferrooxidans. Science 1972; 175: 1124–1126

    Article  PubMed  CAS  Google Scholar 

  57. Sugio T, Tsujita Y, Inagaki K et al. Reduction of cupric ions with elemental sulfur by Thiobacillus ferrooxidans Appl Environ Microbiol 1990; 56: 693–696

    CAS  Google Scholar 

  58. Sugio T, Hirayama K, Inagaki K et al. Molybdenum oxidation by Thiobacillus ferrooxidans. Appl Environ Microbiol 1992; 58: 1768–1771

    PubMed  CAS  Google Scholar 

  59. Suzuki I, Takeuchi TL, Yuthasastrakosol TD et al. Ferrous iron and sulfur oxidation and ferric iron reduction activities of Thiobacillus ferrooxidans are affected by grwth on ferrous iron, sulfur or a sulfide ore. Appl Environ Microbiol 1990; 56: 1620–1626

    PubMed  CAS  Google Scholar 

  60. Pronk JT, de Bruyn JC, Bos P et al. Anaerobic growth of Thiobacillus ferrooxidans. Appl Environ Microbiol 1992; 58: 2227–2230

    PubMed  CAS  Google Scholar 

  61. Goodman AE, Babij T, Ritchie AIM. Leaching of a sulfide ore by Thiobacillus ferrooxidans under anaerobic conditions. In: Rossi G, Torma AE, eds. Recent Progress in Biohydromeatallurgy. Iglesias: Associazione Mineraria Sarda, 1983: 361–376

    Google Scholar 

  62. Sugio T, Tsujita Y, Katagaki T et al. Reduction of Mo6+ with elemental sulfur by Thiobacillus ferrooxidans. J Bacteriol 1988; 170:5956–5959

    Google Scholar 

  63. Torma AP. The role of Thiobacillus ferrooxidans in hydrometallurgical processes. Adv Biochem Eng 1977; 6: 1–38

    CAS  Google Scholar 

  64. Rawlings DE. Restriction enzyme analysis of 16S rRNA genes for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans strains in leaching environments. In: Jerez CA, Vargas T, Toledo H, Wiertz JV, eds. Biohydrometallurgical Processing. Vol II. Santiago: University of Chile Press, 1995: 9–17

    Google Scholar 

  65. Pizarro J, Jedlicki E, Orellana 0 et al. Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation. Appt Environ Microbiol 1996; 62: 1323–1328

    CAS  Google Scholar 

  66. Garcia A, Jerez CA. Changes of the solid-adhered populations of Thiobacillus ferrooxidans, Leptospirillum ferrooxidans and Thiobacillus thiooxidans in leaching ores as determined by immunological analysis. In: Jerez CA, Vargas T, Toledo H, Wiertz JV, eds. Biohydrometallurgical Processing. Vol II. Santiago: University of Chile Press, 1995: 19–30

    Google Scholar 

  67. Sand W, Gerke T, Hallmann R et al. Sulfur chemistry, biofilm, and the (in)direct attack mechanism-a critical evaulation of bacterial leaching. Appl Microbiol Biotechnol 1995; 43:961–966

    Google Scholar 

  68. Arredondo R, Garcia A, Jerez CA. Partial removal of lipopolysaccharide from Thiobacillus ferroxidans affects its adhesion to solids. Appl Environ Microbiol 1994; 60: 2846–2851

    Google Scholar 

  69. Gerke T, Hallmann R, Sand W. Importance of exopolymers from Thiobacillus ferrooxidans and Leptospirillum ferrooxidans for bioleaching. In: Jerez CA, Vargas T, Toledo H, Wiertz JV, eds. Biohydrometallurgical Processing. Vol I. Santiago: University of Chile Press, 1995: 1–11

    Google Scholar 

  70. Blake RC, Shute EA, Howard, GT. Solubilization of minerals by bacteria: Electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite, and sulfur. Appl Environ Microbiol 1994; 6o:3349-3357

    Google Scholar 

  71. Vian M, Creo C, Dalmastri C et al. Thiobacillus ferrooxidans selection in continuous culture. In Lawrence RW, Branion RMR, Ebner HG, eds. Fundamental and Applied Biohydrometallurgy, Amsterdam:Elsevier Science Publishing. 1986; 395–406

    Google Scholar 

  72. McCready RG. Progress in the bacterial leaching of metals in Canada. In: Biohydrometallurgy, Norris PR, Kelly DP, eds. Kew Surrey: Science and Technology Letters, 1988: 177–195

    Google Scholar 

  73. Norris PR, Parrot L, Marsh RM. Moderately thermophilic mineral-oxidizing bacteria. Biotech Bioeng Sym 1986; 16: 253–262

    CAS  Google Scholar 

  74. Sand W, Gerke T, Hallmann R et al. In situ bioleaching of metal sulfides: The importance of Leptospirillum ferrooxidans. In: Torma AE, Wey JE, Lakshmanan VI, eds. Biohydrometallurgical Technologies. Vol I. Warrendale, Pennsylvania: TMS Press 1993: 15–27

    Google Scholar 

  75. Shiratori T, Inoue C, Sugawara K et al. Cloning and expression of Thiobacillus ferrooxidans mercury ion resistance genes in Escherichia coli. J Bacteriol 1989; 171: 3458–3464

    PubMed  CAS  Google Scholar 

  76. Inoue C, Sugawara K, Shiratori T et al. Nucleo tide sequence of the Thiobacillus ferrooxidans chromosomal gene encoding mercuric resistance. Gene 1989;84:47-54

    Google Scholar 

  77. Inoue C, Sugawara K, Kusano T. The merR regulatory gene in Thiobacillus ferrooxidans is spaced apart from the mer structural genes. Mol Microbiol 1991; 5: 2707–2718

    Article  PubMed  CAS  Google Scholar 

  78. Rawlings DE, Woods DR. Development of improved biomining bacteria. In Gaylarde CG, Videla HA, eds. Bioextraction and biodeterioration of metals. Cambridge: Cambridge University Press 1995; 63–84

    Google Scholar 

  79. Rawlings DE, Silver S. Mining with microbes. Bio/Technology 1995; 13: 773–778

    Google Scholar 

  80. Rawlings DE, Deane SM, Butcher B. Unpublished observations

    Google Scholar 

  81. Leong BJY, Dreisinger DB, Branion R et al. The microbiological leaching of a sulfidic copper ore in a strongly saline medium (I): shakeflask and column studies. In: Torma AE, Wey JE, Lakshmanan VI, eds. Biohydrometallurgical Technologies. Vol I. Warrendale, Pennsylvania: TMS Press, 1993: 117–126

    Google Scholar 

  82. Lawson EN, Nicholas CJ, Pellat H. The toxic effects of chloride ions on Thiobacillus ferrooxidans. In: Jerez CA, Vargas T, Toledo H, Wiertz JV, eds. Biohydrometallurgical Processing. Vol I. Santiago: University of Chile Press, 1995: 165–174

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rawlings, D.E. (1997). Mesophilic, Autotrophic Bioleaching Bacteria: Description, Physiology and Role. In: Rawlings, D.E. (eds) Biomining. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06111-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06111-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06113-8

  • Online ISBN: 978-3-662-06111-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics