Skip to main content

Impact-Generated Hydrothermal Systems: Data from Popigai, Kara, and Puchezh-Katunki Impact Structures

  • Chapter
Impacts in Precambrian Shields

Part of the book series: Impact Studies ((IMPACTSTUD))

Abstract

The basic and common features of impact-generated hydrothermal systems are considered, based on studies of the hydrothermal mineralization in large Russian impact structures — Popigai (diameter: 100 km), Kara (65 km), and Puchezh-Katunki (80 km). The dominant hydrothermal assemblages at all craters are clay minerals (smectites, chlorites, and mixed-layered smectites-chlorites), various zeolites, calcite, and pyrite; in addition, cristobalite, quartz, opal, anhydrite, gypsum, apophyllite, prehnite, epidote, andradite, ferrosalite, actinolite, and albite occur locally. In Puchezh-Katunki, the abundant hydrothermal mineralization within the central uplift area shows a distinct vertical distribution due to thermal gradients: an upper smectite-zeolite zone and a lower chlorite-anhydrite zone can be distinguished. In Kara and Popigai, where the hydrothermal alteration affected mainly the impact melt rocks filling the craters, a vertical zonation of clay minerals is only outlined, whereas the distribution of other minerals mainly results from different host lithologies. The mineral assemblages indicate post-impact hydrothermal alteration at temperatures of 50–350°C, pH of 6–8, and Eh > −0.5. The AlIV content in clay minerals and zeolites decreases from the base to the top of thick impact rock sequences, indicating the decrease of temperature and pH of the mineral-forming solutions. The composition of the hydrothermal mineralization in impact craters is determined by the target composition and by the occurrence of large amounts of shock-derived aluminosilicate materials, which result in alkaline properties and higher silica activities in the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aldahan AA (1990) Alteration and mass transfer in cataclasites and mylonites in 6.6 km of granitic crust at the Siljan impact structure, central Sweden. Contributions to Mineralogy and Petrology 105: 662–676

    Article  Google Scholar 

  2. Allen CC, Gooding JL, Keil K (1982) Hydrothermally altered impact melt rock and breccia: Contributions to the soil of Mars. Journal of Geophysical Research 87: 10,083–10, 101

    Google Scholar 

  3. Ames DE, Gibson HL (1995) Controls on and geological setting of regional hydrothermal alteration within the Onaping Formation, footwall to the Errington and Vermilion base metal deposits, Sudbury structure, Ontario. Geological Society of Canada Current Research 1995-E. Ottawa, pp 161–174

    Google Scholar 

  4. Bain JG, Kissin SA (1988) A preliminary study of fluid inclusions in shock-metamorphosed sediments at the Haughton impact structure, Devon Island, Canada [abs]. Lunar and Planetary Institute Contribution 665. Houston, p D-7

    Google Scholar 

  5. Beals CS (1960) A probable meteorite crater of Precambrian age at Holleford, Ontario. Dominion Observatory Ottawa Publications 24: 117–142

    Google Scholar 

  6. Beals CS, Dence MR, Cohen AJ (1967) Evidence for the impact origin of Lac Couture. Dominion Observatory Ottawa Publications 31: 409–426

    Google Scholar 

  7. Boer RH, Reimold WU, Koeberl C, Kesler SE (1996) Fluid inclusion studies on drill core samples from the Manson impact crater: Evidence for post-impact hydrothermal activity. In:

    Google Scholar 

  8. Koeberl C, Anderson RR (eds) The Manson Impact Structure, Iowa: Anatomy of an impact crater. Boulder, CO, Geological Society of America Special Paper 302: 377–382

    Google Scholar 

  9. Boslough MB, Cygan RT (1988) Shock-enhanced dissolution of silicate minerals and chemical weathering on planetary systems. Lunar and Planetary Science 18: 443–453

    Google Scholar 

  10. Brindley GW, Brown G (eds) (1980) Crystal structures of clay minerals and their X-ray identification. Publications by Mineralogical Society of England, 500 pp

    Google Scholar 

  11. Carrigy MA (1968) Evidence of shock metamorphism in rocks from the Steen River structure, Alberta. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Book Corporation, Baltimore, pp 357–368

    Google Scholar 

  12. Crossey LJ, Kudo AM, McCarville P (1994) Post-impact hydrothermal systems: Manson impact structure, Manson, Iowa labs]. Lunar and Planetary Sciences XXV. Lunar and Planetary Institute, Houston, pp 299–300

    Google Scholar 

  13. Currie KL (1965) The geology of the New Quebec crater. Canadian Journal of Earth Sciences 2: 141–160

    Article  Google Scholar 

  14. Currie KL (1971a) A study of potash fenitization around the Brent crater, Ontario–a paleozoic alkaline complex. Canadian Journal of Earth Sciences 8: 481–497

    Article  Google Scholar 

  15. Currie KL (1971b) Geology of the resurgent cryptoexplosion caldera at Mistastin Lake, Labrador. Geological Survey of Canada Bulletin 207: 1–62

    Google Scholar 

  16. Currie KL (1972) Geology and petrology of the Manicouagan resurgent caldera, Quebec. Geological Survey of Canada Bulletin 198: 1–154

    Google Scholar 

  17. Davies JF, Leroux MV, Whitehead RE, Goodfellow WD (1990) Oxygen-isotope composition and temperature of fluids involved in deposition of Proterozoic cedex deposits, Sudbury Basin, Ontario. Canadian Journal of Earth Sciences 27: 1299–1303

    Google Scholar 

  18. Dence MR, Innes MJS, Robertson PB (1968) Recent geological and geophysical studies of Canadian craters. In: French BM and Short NM (eds) Shock metamorphism of natural materials. Mono Book Corporation, Baltimore, pp 339–362

    Google Scholar 

  19. Dressler BO, Sharpton VL (1997) Breccia formation at a complex impact crater, Slate Island, Lake Superior, Ontario, Canada. Tectonophysics 275: 285–312

    Google Scholar 

  20. Dritz VA, Kossowskaya AG (1990) Clay minerals: smectites, mixed-layer silicates Nauka Press, Moscow, Russia, 214 pp

    Google Scholar 

  21. Engelhardt W (1972) Shock produced rock glasses from the Ries crater. Contributions to Mineralogy and Petrology 36: 265–292

    Article  Google Scholar 

  22. Engelhardt W, Matthai SC, Walzebuck J (1992) Araguainha impact crater, Brazil, I: The interior part of the uplift. Meteoritics 27: 442–457

    Google Scholar 

  23. Fiske PS, Hargraves RB, Onstott TC, Koeberl C, Hougen SB (1994). Pseudotachylites of the Beaverhead impact structure: Geochemical, geochronological, petrographic, and field investigations. In: Dressler B, Grieve RAF, Sharpton VL (eds) Large Meteorite Impacts and Planetary Evolution. Boulder, CO, Geological Society of America Special Paper 293: 163176

    Google Scholar 

  24. Floran RJ, Grieve RAF, Phinney WC, Warner JL, Simonds CH, Blanchard DP, Dence MR (1978) Manicouagan impact melt, Quebec. I: Stratigraphy, petrology, and chemistry. Journal of Geophysical Research 83: 2737–2759

    Google Scholar 

  25. Florensky PV, Dabizha AI (1980) Zhamanshin meteorite crater (in Russian). Nauka Press, Moscow, Russia, 126 pp

    Google Scholar 

  26. French BM, Koeberl C, Gilmour I, Shirey SB, Dons JA, Naterstad J (1997) The Gardnos impact structure, Norway: petrology and geochemistry of target rocks and impactites. Geochimica et Cosmochimica Acta 61: 873–904

    Article  Google Scholar 

  27. Glazovskaya LI, Gromov EI, Parfenova OV, Ilkevich GI (1991) Logoisk astrobleme (in Russian). Nauka Press, Moscow, Russia, 135 pp

    Google Scholar 

  28. Gottardi D, Galli G (1985) Natural zeolites. Springer Verlag, Berlin-Heidelberg, 410 pp

    Chapter  Google Scholar 

  29. Grieve RAF (1975) Petrology and chemistry of impact melt at Mistastin Lake crater, Labrador. Geological Society of America Bulletin 86: 1617–1629

    Article  Google Scholar 

  30. Grieve RAF (1978) The melt rocks at Brent crater, Ontario, Canada. Lunar and Planetary Science 9: 2579–2608

    Google Scholar 

  31. Grieve RAF, Ber TJ (1994) Shocked lithologies at the Wanapitei impact structure, Ontario, Canada. Meteoritics 29: 621–631

    Google Scholar 

  32. Grieve RAF, Shoemaker EM (1994) The record of the past impacts on the Earth. In: Gehrels T

    Google Scholar 

  33. Hazards due to comets and asteroids. Arizona university Press, Tuscon, pp 417–462 Guppy DJ, Brett R, Milton DJ (1971) Liverpool and Strangways craters, Northern Territory: two

    Google Scholar 

  34. structures of probable impact origin. Journal of Geophysical Research 76: 5387–5393

    Google Scholar 

  35. Gurov EP, Gurova EP, Pavljuk VI, Sokur TM (2000) Zapadnaya astrobleme: Anatomy of an

    Google Scholar 

  36. diamond-bearing impact structure (in Russian). Geologichny Zhournal 2: 29–38

    Google Scholar 

  37. Heyl AV, Brock MR (1962) Zink occurrences in the Serpent Mound structure, southern Ohio.

    Google Scholar 

  38. US Geological Survey Professional Paper 450D: 95–97

    Google Scholar 

  39. Johansson A (1984) Geochemical studies on the Boda Pb-Zn deposits in the Siljan astrobleme, central Sweden. Geologiska Föreningen i Stockholm Forhandlingar 106: 15–25

    Article  Google Scholar 

  40. Joint Committee on Powder Diffraction Standards, Selected powder diffraction data for minerals, search manual, Pub. M-1–23. Swarthmore, Pa, 1974

    Google Scholar 

  41. Kiilsgaard TH, Heyl AV, Brock MR (1963) The Crooked Creek disturbance, Missouri. US Geological Survey Professional Paper 450E: 14–20

    Google Scholar 

  42. Kirsimäe K, Suuroja S, Kirs J, Kärki A, Polikarpus M, Puura V, Suuroja K (2002) Hornblende alteration and fluid inclusions in Kärdla impact crater, Estonia — an indication for the post-impact hydrothermal activities. Meteoritics Planetary Sciences (accepted)

    Google Scholar 

  43. Koeberl C, Fredriksson K, Götzinger M, Reimold WU (1989) Anomalous quartz from the Roter Kamm impact crater, Namibia: Evidence for post-impact activity? Geochimica et Cosmochimica Acta 53: 2113–2118

    Google Scholar 

  44. Komor SC, Valley JW (1990) Deep drilling at the Siljan Ring impact structure: oxygen-isotope geochemistry of granite. Contributions to Mineralogy and Petrology 105: 516–532

    Article  Google Scholar 

  45. Komor SC, Valley JW, Brown PE, Collini B (1988) Fluid inclusions in granite from the Siljan Ring structure and surrounding regions. In: Boden A, Eriksson KS (eds) Deep drilling in crystalline bedrock, Volume 1. Springer Verlag, Berlin-Heidelberg, pp 180–208

    Chapter  Google Scholar 

  46. Kring DA, Hildebrand AR, Boynton WV (1991) The petrology of an andesitic melt rocks and a polymict breccia from the interior of the Chicxulub structure, Yucatan, Mexico [abs]. Lunar and Planetary Science 22: 755–756

    Google Scholar 

  47. Kristmannsdottir H (1979). Alteration of basaltic rocks by hydrothermal activity at 100–300°C. In: Mortland MM, Farmer VC (eds) Proceedings of the 6`h International Clay Conference. Elsevier, Amsterdam, pp 359–367

    Google Scholar 

  48. Lambert P (1977) Effects of natural and artificial shock waves, and the Rochechouart impact crater (in French). Dissertation, Universite de Sud Paris

    Google Scholar 

  49. Laurén L, Lehtovaara J, Boström R (1978) On the geology of the circular depression at Söderfjärden, Western Finland. Geological Society of Finland Bulletin 297: 5–38

    Google Scholar 

  50. Lehtinen M (1976) Lake Lappajärvi, a meteorite impact site in Western Finland. Geological Survey of Finland Bulletin 282: 1–92

    Google Scholar 

  51. Mannkopff H, Friede G (1975) Principles and methods of spectrochemical emission analysis (in German). Verlag Chemie, Weinheim, 218 pp

    Google Scholar 

  52. Masaitis VL (ed) (1983) Textures and structures of impact breccias and impactites (in Russian). Nedra Press, Leningrad, 159 pp

    Google Scholar 

  53. Masaitis VL (1999) Impact structures of northeastern Eurasia: The territories of Russia and adjacent countries. Meteoritics Planetary Sciences 34: 691–711

    Article  Google Scholar 

  54. Masaitis VL, Mashchak MS (1996) Recrystallization and blasthesis in shocked rocks of impact

    Google Scholar 

  55. structures (in Russian). Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 125 4: 1–18 Masaitis VL, Naumov MV (1993) Principal model of hydrothermal circulation in impact craters

    Google Scholar 

  56. in Russian). Doklady (Transactions) of Russian Academy of Sciences 333: 70–72

    Google Scholar 

  57. Masaitis VL, Pevzner LA (eds) (1999). Deep drilling in the Puchezh-Katunki impact structure (in

    Google Scholar 

  58. Russian). VSEGEI Press, St.Petersburg, 399 pp

    Google Scholar 

  59. Masaitis VL, Danilin AN, Mashchak MS, Raikhlin AI, Selivanovskaya TV, Shadenkov EM (1980) The geology of astroblemes (in Russian). Nedra Press, Leningrad, 231 pp

    Google Scholar 

  60. Masaitis VL, Mashchak MS, Raikhlin AI, Selivanovskaya TV, Shafranovsky GI (1998) Diamond-bearing impactites of the Popigai astrobleme (in Russian). VSEGEI Press, St.Petersburg, 182 pp

    Google Scholar 

  61. Masaitis VL, Naumov MV, Mashchak MS (1999) The anatomy of the Popigai impact crater, Russia. In: Dressler B, Sharpton VL (eds) Large Meteorite Impacts and Planetary Evolution II. Boulder, CO, Geological Society of America Special Paper 339: 1–17

    Google Scholar 

  62. Mashchak MS (1990a) Geological conditions of time of formation of impact craters on Pai-Khoi (in Russian). In: Masaitis VL (ed) Impact craters on MZ-KZ boundary. Nauka Press, Leningrad, pp 24–37

    Google Scholar 

  63. Mashchak MS (1990b) Morphology and structure of Kara and Ust-Kara astroblemes (in Russian). In: Masaitis VL (ed) Impact craters on MZ-KZ boundary. Nauka Press, Leningrad, pp 37–55

    Google Scholar 

  64. Mashchak MS, Selivanovskaya TV (1988) Breccia and impactites on the southwestern edge of the Popigai astrobleme (in Russian). Meteoritika 47: 178–188

    Google Scholar 

  65. McCarville P, Crossey LJ (1996) Post-impact hydrothermal alteration of the Manson impact structure. In: Koeberl C, Anderson RR (eds) The Manson Impact Structure, Iowa: anatomy of an impact crater. Boulder, CO, Geological Society of America Special Paper 302: 347–376

    Chapter  Google Scholar 

  66. Metzler A, Ostertag R, Redeker H-J, Stöffler D (1988) Composition of the crystalline basement and shock metamorphism of crystalline and sedimentary rocks at the Haughton impact crater, Devon Island, Canada. Meteoritics 23: 197–207

    Google Scholar 

  67. Milton DJ, Barlow BC, Brett R, Brown AR, Glikson AY, Manwaring EA, Moss FJ, Sedmik ECE, Van Son J, Young G A (1972) Gosses Bluff impact structure, Australia. Science 175: 1199–1207

    Google Scholar 

  68. Morad S, Fillipidis A, Aldahan AA (1989) Stellerite and Sr-containing stilbite in granitic rocks from the Siljan Ring structure, central Sweden. Bulletin of the Geological Institutions of the University of Uppsala 12: 143–149

    Google Scholar 

  69. Motuza GB, Gailius RP (1980) The Mizarai meteorite crater (in Russian). Transactions of Lithuanian University, Geologija 1: 78–88

    Google Scholar 

  70. Movshovich AE, Milyaysky AE (1990) Morphology and inner structure of the Kamensk and Gusev astroblemes (in Russian). In: Masaitis VL (ed) Impact craters on MZ-KZ boundary. Nauka Press, Leningrad, pp 110–146

    Google Scholar 

  71. Naumov MV (1993) Zeolite mineralization in impact craters (in Russian). Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 122 4: 1–12

    Google Scholar 

  72. Naumov MV (1996) Basic regularities of post-impact hydrothermal process (in Russian). Astronomicheskii Vestnik 30: 25–32

    Google Scholar 

  73. Naumov MV (1999) The hydrothermal-metasomatic mineral formation (in Russian). In: Masaitis VL, Pevzner LA (eds) Deep drilling in the Puchezh-Katunki impact structure. VSEGEI Press, St.Petersburg, pp 276–286

    Google Scholar 

  74. Newsom HE (1980) Hydrothermal alteration of impact melt sheets with implications for Mars. Icarus 44: 207–216

    Article  Google Scholar 

  75. Newsom HE, Graup G, Sewards T, Keil K (1986) Fluidization and hydrothermal alteration of the suevite deposit at the Ries crater, West Germany, and implications for Mars. Journal of Geophysical Research 91: E239 - E251

    Article  Google Scholar 

  76. Nikolsky AP (1991) Geological structure of iron ore deposit Pervomayskoe and its transformation caused by meteorite impact (in Russian). Nedra Press, Moscow, 71 pp

    Google Scholar 

  77. Offield TW, Pohn HA (1977) Deformation at the Decaturville impact structure, Missouri. In: Roddy DJ, Pepin RO, Merrill RB (eds) Impact and explosion cratering. Pergamon Press, New York, pp 321–342

    Google Scholar 

  78. Osinski GR, Spray JG, Lee P (2001) Impact-induced hydrothermal activity within Haughton impact structure, arctic Canada: Generation of a transient, warm, wet oasis. Meteoritics Planetary Science 36: 731–745

    Google Scholar 

  79. Pagel M, Poty B (1975) Fluid inclusion studies in rocks of the Charlevoix structure ( Quebec, Canada). Fortsch Miner 52: 479–489

    Google Scholar 

  80. Pagel M, Wheatley K, Ey F (1985) The origin of the Carswell circular structure. In: Laine R, Alonso D, Swab M (eds) The Carswell ore uranium deposits, Saskatchewan. Canadian Geological Association Special Paper, Toronto, pp 213–222

    Google Scholar 

  81. Palme H, Gobel E, Grieve RAF (1979) The distribution of volatile and siderophile elements in

    Google Scholar 

  82. the impact melt of East Clearwater (Quebec). Lunar and Planetary Science 10: 2465–2492 Papunen H (1973) Chemical composition and origin of the shock metamorphic rocks of the

    Google Scholar 

  83. Sääksjärvi area, Finland. Geological Survey of Finland Bulletin 45: 29–34

    Google Scholar 

  84. Reimold WU, Oskierski W, Huth J (1987) The pseudotachylite from Champagnac in the Rochechouart meteorite crater, France. Journal of Geophysical Research 92: E737 - E748

    Article  Google Scholar 

  85. Reimold WU, Barr JM, Grieve RAF, Durrheim RJ (1990) Geochemistry of the melt and country rocks of the Lake St. Martin impact structure, Manitoba, Canada. Geochimica et Cosmochimica Acta 54: 2093–2111

    Google Scholar 

  86. Reimold WU, Koeberl C, Bishop J (1994) Roter Kamm impact crater, Namibia: geochemistry of

    Google Scholar 

  87. basement rocks and breccias. Geochimica et Cosmochimica Acta 58: 2689–2710

    Google Scholar 

  88. Robinson D, Santana de Zamora A (1999) The smectite to chlorite transition in the Chipilapa

    Google Scholar 

  89. geothermal system, El Salvador. American Mineralogist 84: 607–619

    Google Scholar 

  90. Rondot J (1983) The Charlevoix astrobleme: a trace after the impact of a large meteorite (in French). Annales Sciences de l’Université de Clermont Ferrand 75: 1–169

    Google Scholar 

  91. Roussel DH (1984) Mineralization in the Whitewater Group. In: Pye EG, Naldrett AL, Giblin PE (eds) The geology and ore deposits of the Sudbury structure. Ontario Geological Survey Special Volume 1, pp 219–233

    Google Scholar 

  92. Rudnik VA, Smyslov AA (eds) (1986) Physical and physical-chemical analytical methods during geochemical explorations (in Russian). VSEGEI Press, Leningrad, 263 pp

    Google Scholar 

  93. Ruhlmann E (1985) Mineralogy and metallogeny of uraniferous occurrences in the Carswell structure. In: Laine R, Alonso D, Swab M (eds) The Carswell ore uranium deposits, Saskatchewan. Canadian Geological Association Special Paper, Toronto, pp 105–120

    Google Scholar 

  94. Ryabenko VA (ed) (1982) The geology and petrology of meteoritic explosion craters (in Russian). Naukova Dumka, Kiev, 226 pp

    Google Scholar 

  95. Rychagov SN, Zhatnuev IS, Korobov AD, Kiryukhin VA, Glavatskikh SF (1993). The structure of a hydrothermal system (in Russian). Nauka Press, Moscow, 298 pp

    Google Scholar 

  96. Rychagov SN, Glavatskikh SF, Goncharenko OP (1994) Thermal regime of secondary mineral formation and structure of temperature field in interior of Baransky volcano ( Iturup Island) (in Russian ). Volcanolgija i seismologija 6: 96–112

    Google Scholar 

  97. Schuraytz BC, Sharpton VL, Marin LE (1994) Petrology of impact-melt rocks at the Chicxulub multiring basin, Yucatan, Mexico. Geology 22: 868–872

    Google Scholar 

  98. Selivanovskaya TV, Mashchak MS, Ezersky VA, Reshetnyak NB (1982) Impact glasses in suevites of the Kara and Ust-Kara astroblemes (in Russian). Meteoritika 40: 122–130

    Google Scholar 

  99. Sheridan MF, Ragan DM (1976) Compaction of ash-flow tuffs. In: Chilingarian GV, Wolf KH (eds) Compaction of coarse-grained sediments, II (Developments in sedimentology 18B ). Elsevier, Amsterdam-Oxford-New York, pp 677–718

    Google Scholar 

  100. Short NM (1970) Anatomy of meteorite impact crater, West-Hawk, Manitoba, Canada. Geological Society of America Bulletin 81: 609–648

    Article  Google Scholar 

  101. Slovtsov IB, Moskaleva GN (1989) Phyllosilicates as probable indicators of PT conditions of hydrothermal process (in Russian). Volcanologija i seismologija 5: 104–110

    Google Scholar 

  102. Stähle V, Otteman J (1977) Deep drilling in the Ries 1973: Zeolitization of glass in suevites and petrography of fall-back suevite and lithic breccias (in German). Geologica Bavarica 75: 191–218

    Google Scholar 

  103. Stanfors R (1969) Lake Mien: an astrobleme or a volcanotectonic structure. Geologiska Föreningen i Stockholm Forhandlingar 91: 73–86

    Article  Google Scholar 

  104. Stearns RC, Wilson GW, Tiedemann HA, Wilcox JT, Marsch PS (1968) The Walls Creek structure, Tennessee. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Book Corporation, Baltimore, pp 323–338

    Google Scholar 

  105. Stöffler D, Ewald U, Ostertag R, Reimold WU (1977) Research drilling Nördlingen 1973 ( Ries) - composition and texture of polymict impact breccias. Geologica Bavarica 75: 163–189

    Google Scholar 

  106. Sturkell EFF, Broman G, Forsberg P, Torrsander P (1998) Impact-related hydrothermal activity in the Lockne impact structure, Jämtland, Sweden. European Journal of Mineralogy 10: 589606

    Google Scholar 

  107. Tatarintsev VI, Krochuck VM, Bondarenko IN, Legkova GV (1981) Sphalerite from an explosion structure on the Ukrainian Shield (in Russian). In: Mineralogy and Petrology of Ore Areas of the Ukrainian Shield. Naukova Dumka, Kiev, Ukraine, pp 41–50

    Google Scholar 

  108. Valter AA, Bobonich FM (1979) Rock-forming clinoptilolite in a meteorite crater deposits (in

    Google Scholar 

  109. Russian). Doklady (Transactions) of Russian Academy of Sciences 248: 710–714

    Google Scholar 

  110. Valter AA, Ryabenko VA (1977) Explosion craters on the Ukrainian Shield (in Russian).

    Google Scholar 

  111. Naukova Dumka, Kiev, 154 pp

    Google Scholar 

  112. Valter AA, Bobonich FM, Polshin EA (1988) The nature of hisingerite from the Terny astrobleme (in Russian). Mineralogichesky Zhournal 10 5: 50–63

    Google Scholar 

  113. Valter AA, Fedulov KV, Bobonich FM, Solomakha VN (1995) Zeolites and associated secondary minerals in impactites (in Russian). Mineralogichesky Zhournal 17 1: 71–81

    Google Scholar 

  114. Vellon C (1976) Optical atomic emission spectroscopic methods. In: Winefordner JD (ed) Trace analysis: spectroscopic methods for elements. A Wiley-Interscience Publication, New YorkLjndon-Sydney-Toronto, pp 136–199

    Google Scholar 

  115. Yushkin NP, Maslov MA, Miklyaev AS (1976) Zeolites (laumontite, analcime) and associated minerals from the Kara circular depression on the Pai-Khoi ridge (in Russian). In: Minerals and mineral parageneses of rocks. Nauka Press, Leningrad pp 71–75

    Google Scholar 

  116. Zhukov F, Petersell V, Fomin Yu (1987) The evidence of Paleozoic volcanism in Estonia (in Russian). Doklady (Transactions) of the Estonian Academy of Sciences 36: 6–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Naumov, M.V. (2002). Impact-Generated Hydrothermal Systems: Data from Popigai, Kara, and Puchezh-Katunki Impact Structures. In: Plado, J., Pesonen, L.J. (eds) Impacts in Precambrian Shields. Impact Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05010-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05010-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07803-3

  • Online ISBN: 978-3-662-05010-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics