Skip to main content

Marine Carbonates: Their Formation and Destruction

  • Chapter
Marine Geochemistry

Abstract

For marine carbonates, an overwhelming amount of information exists in a variety of specialized journals addressing marine geochemistry and carbon cycling, as well as in many books summarizing the state of knowledge on this topic. Therefore it would be far beyond the scope of this chapter to try to completely review what is known about marine calcareous sediments and their diagenesis. On the other hand, although intensively investigated since the previous century (e.g. Murray 1897), marine carbonates have gained increasing attention by marine biologists, geochemists, paleoceanographers and paleoclimatologists over the last three decades. Among other reasons this is because marine carbonates, together with the oceanic CO2-carbonic acid-system, act as a sink or source of carbon within the global carbon cycle which has become a key topic of investigation and modelling related to the role of the greenhouse gas CO in future global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adler, M., Hensen, C. and Schulz, H.D., in press. Computer simulation of deep-sulfate reduction in sediments off the Amazon Fan. Geol. Rdsch.

    Google Scholar 

  • Andersen, N.R. and Malahoff, A., 1977. The fate of fossil fuel C02 in the Oceans. Plenum Press, NY, 749 pp.

    Google Scholar 

  • Archer, D.E., 1991. Modeling the calcite lysocline. Journal of Geological Research, 96: 17037–17050.

    Google Scholar 

  • Archer, D. and Maier-Reimer, E., 1994. Effect of deep-sea sedimentary calcite preservation on atmospheric C02 concentration. Nature, 367: 260–263.

    Article  Google Scholar 

  • Archer, D.E., 1996a. An atlas of the distribution of calcium carbonate in sediments of the deep sea. Global Biochemical Cycles, 10: 159–174.

    Article  Google Scholar 

  • Archer, D.E., 1996b. A data-driven model of the global calcite lysocline. Global Biochemical Cycles, 10: 511–526.

    Article  Google Scholar 

  • Berelson, W.M., Hammond, D.E. and Cutter, G.A., 1990. In situ measurements of calcium carbonate dissolution rates in deep-sea sediments. Geochimica et Cosmochimica Acta, 54: 3013–3020.

    Article  Google Scholar 

  • Berelson, W.M., Hammond, D.E., McManus, J. and Kilgore, T.E., 1994. Dissolution kinetics of calcium carbonate in equatorial Pacific sediments. Global Biogeochemical Cycles, 8: 219–235.

    Article  Google Scholar 

  • Berger, W.H., 1976. Biogenic deep-sea sediments: Production, preservation and interpretation. In: Riley, J.P. and Chester, R. (eds) Chemical Oceanography, 5, Academic Press, London, pp. 266–388.

    Google Scholar 

  • Berger, W.H., 1982. Increase of carbon dioxide in the atmosphere during deglaciation: The coral reef hypothesis. Naturwissenschaften, 69, 87.

    Article  Google Scholar 

  • Broecker, W.S. and Peng, T.-H., 1982. Tracers in the Sea. Lamont-Doherty Geol. Observation, Eldigo Press, Palisades, NY, 690 pp.

    Google Scholar 

  • Broecker, W.S. and Peng, T.-H., 1987. The Role of CaCO3 compensation in the glacial to interglacial atmospheric C02 change. Global Biogeochemical Cycles, 1: 15–29.

    Article  Google Scholar 

  • DeBaar, H.J.W. and Suess, E., 1993. Ocean carbon cycle and climate change — An introduction to the interdisciplinary Union Symposium. Global and Planetery Change, 8: VII–XI.

    Article  Google Scholar 

  • Dittert, N., Baumann, K.H., Bickert, T., Henrich, R., Huber, R., Kinkel, H. and Meggers, H., in press. Carbonate dissolution in the deep ocean: Methods, quantification and paleoceanography application. In: Fischer, G. and Wefer, G. (eds) Use of proxies in paleoceanography: examples from the South Atlantic, Springer, Berlin, Heidelberg, NY.

    Google Scholar 

  • Emerson, S.R., Jahnke, R., Bender, M., Froelich, P., Klinkhammer, G., Bowser, C. and Setlock, G., 1980. Early diagenesis in sediments from the eastern equatorial Pacific. 1. Pore water nutrient and carbonate results. Earth Planet Science Letters, 49: 57–80.

    Article  Google Scholar 

  • Emerson, S. and Bender, M., 1981. Carbon fluxes at the sediment-water interface of the deep-sea: calcium carbonate preservation. Journal of Marine Research, 39: 139–162.

    Google Scholar 

  • Emerson, S., Grundmanis, V. and Graham, D., 1982. Carbonate chemistry in marine pore waters: MANOP sites C and S. Earth and Planetary Science Letters, 61: 220–232.

    Article  Google Scholar 

  • Goyet, C. and Poisson, A., 1989. New determination of carbonic acid dissociation constants in seawater as a function of temperature and salinity. Deep-Sea-Research, 36: 1635–1654.

    Article  Google Scholar 

  • Hales, B. and Emerson, S., 1996. Calcite dissolution in sediments of the Ontong-Java Plateau: In situ measurements of pore water 02 and pH. Global Biogeochemical Cycles, 10: 527–541.

    Article  Google Scholar 

  • Hales, B. and Emerson, S., 1997a. Calcite dissolution in sediments of the Ceara Rise: In situ measurements of porewater 02, pH, and C02(aq). Geochimica et Cosmochimica Acta, 61: 501–514.

    Article  Google Scholar 

  • Hales, B. and Emerson, S., 1997b. Evidence is support of first-order dissolution kinetics of calcite in seawater. Earth and Planetary Science Letters, 148: 317–327.

    Article  Google Scholar 

  • Hamer, K. and Sieger, R., 1994. Anwendung des Modells CoTAM zur Simulation von Stofftransport und geochemi-schen Reaktionen. Verlag Ernst und Sohn, Berlin, 186 pp.

    Google Scholar 

  • Hammond, D.E., McManus, J., Berelson, W.M., Kilgore, T.E. and Pope, R.H., 1996. Early diagenesis of organic material in equatorial Pacific sediments: stoichiometry and kinetics. Deep-Sea Research, 43: 1365–1412.

    Article  Google Scholar 

  • Hay, W.W. and Southam, J.R., 1977. Modulation of marine sedimentation by continental shelves. In: Andersen, N.R. and Malahoff, A. (eds) The fate of fossil fuel CO2 in the Oceans. Plenum Press, NY, pp. 564–604.

    Google Scholar 

  • Hensen, C, Landenberger, H., Zabel, M., Gundersen, J.K., Glud, R.N. and Schulz, H.D., 1997. Simulation of early diagenetic processes in continental slope sediments in Southwest Africa: The computer model CoTAM tested. Marine Geology, 144: 191–210.

    Article  Google Scholar 

  • Hensen, C, Landenberger, H., Zabel, M. and Schulz, H.D., 1998. Quantification of diffusive benthic fluxes of nitrate, phosphate and silicate in the Southern Atlantic Ocean. Global Biogeochemical Cycles, 12: 193–210.

    Article  Google Scholar 

  • Jahnke, R.A., Craven, D.B. and Gaillard, J.-E, 1994. The influence of organic matter diagenesis on CaCO3 dissolution at the deep-sea floor. Geochimica et Cosmochimica Acta, 58: 2799–2809.

    Article  Google Scholar 

  • Jahnke, R.A., 1996. The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Global Biogeochemical Cycles, 10: 71–88.

    Article  Google Scholar 

  • Jahnke, R.A., Craven, D.B., McCorkle, D.C. and Reimers, C.E., 1997. CaCO3 dissolution in California continental margin sediments: The influence of organic matter remineralization. Geochimica et Cosmochimica Acta, 61: 3587–3604.

    Article  Google Scholar 

  • James, N.R and Clarke, J.A.D., 1997. Cool-water carbonates, SEPM Spec. Publ., 56, Tulsa, Oklahoma, 440 pp.

    Book  Google Scholar 

  • Keir, R.S., 1980. The dissolution kinetics of biogenic calcium carbonates in seawater. Geochimica et Cosmochimica Acta, 44: 241–252.

    Article  Google Scholar 

  • Kharaka, Y.K., Gunter, W.D., Aggarwal, P.K., Perkins, E.H. and DeBraal, J.D., 1988. SOLMINEQ88: a computer program for geochemical modeling of water-rock-interactions. Water-Recources Invest. Report, 88–4227, US Geol. Surv., 207 pp.

    Google Scholar 

  • Lisitzin, A.P., 1996. Oceanic sedimentation: Lithology and Geochemistry (English Translation edited by Kennett, J.P.). Amer. Geophys. Union, Washington, D.C, 400 pp.

    Book  Google Scholar 

  • Mackenzie, F.T., Ver, L.M., Sabine, C, Lane, M. and Lerman, A., 1993. C, N, P, S global biogeochemical cycles and modeling of global change. In : Wollast, R., Mackenzie, F.T. and Chou, L. (eds), Interactions of C, N, P and S biogeochemical cycles and global change. NATO ASI Series, 14, Springer Verlag, pp 1–61.

    Chapter  Google Scholar 

  • Maier-Reimer, E. and Bacastow, R., 1990. Modelling of geochemical tracers in the ocean. Climate-Ocean Interaction. In: Schlesinger, M.E. (ed), Climate-ocean interactions, Kluwer, pp. 233–267.

    Chapter  Google Scholar 

  • Martin, W.R. and Sayles, F.L., 1996. CaCO3 dissolution in sediments of the Ceara Rise, western equatorial Atlantic. Geochimica et Cosmochimica Acta, 60: 243–263.

    Article  Google Scholar 

  • Mehrbach, C, Culberson, C, Hawley, J.E. and Pytkowicz, R.M., 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography, 18: 897–907.

    Article  Google Scholar 

  • Millero, F.J., 1995. Thermodynamics of the carbon dioxide systems in the oceans. Geochimica et Cosmochimica Acta, 59: 661–677.

    Article  Google Scholar 

  • Milliman, J.D., 1993. Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochemical Cycles, 7: 927–957.

    Article  Google Scholar 

  • Milliman, J.D. and Droxler, A.W., 1996. Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not a bliss. Geologische Rundschau, 85: 496–504.

    Article  Google Scholar 

  • Morse, J.W., 1978. Dissolution kinetics of calcium carbonate in sea water: VI. The near-equilibrium dissolution kinetics of calcium carbonate-rich deep-sea sediments. American Journal of Science, 278: 344–353.

    Article  Google Scholar 

  • Morse, J.W. and Berner, R.A., 1979. Chemistry of calcium carbonate in the deep ocean. In: Jenne, E.A. (ed), Chemical modelling in aqueous systems. Am. Chem. Soc, Symp. Ser., 93, pp. 499–535.

    Chapter  Google Scholar 

  • Morse, J.W. and Mackenzie, F.T., 1990. Geochemistry of sedimentary carbonates. Elsevier, Amsterdam, 707 pp.

    Google Scholar 

  • Murray, J.W., 1897. On the distribution of the pelagic foraminifera at the surface and on the sea floor of the ocean. Nat. Sci., 11: 17–27.

    Google Scholar 

  • Murray, J.W., Emerson, S. and Jahnke, R.A., 1980. Carbonate saturation and the effect of pressure on the alkalinity of interstitial waters from the Guatemala Basin. Geochimica et Cosmochimica Acta, 44: 963–972.

    Article  Google Scholar 

  • Nordstrom, D.K., Plummer, L.N., Wigley, T.M.L., Wolery, T.J., Ball, J.W., Jenne, E.A., Basset, R.L., Crerar, D.A., Florence, T.M., Fritz, B., Hoffman, M., Holdren, G.R. Jr., Lafon, G.M., Mattigod, S.V., McDuff, R.E., Morel, E, Reddy, M.M., Sposito, G. and Thrailkill, J., 1979. A comparision of computerized chemical models for equilibrium calculations in aqueous systems. In: Jenne, E.A. (ed), Chemical modeling in aqueous systems, speciation, sorption, solubility, and kinetics, 93, American Chemical Society, pp. 857–892.

    Chapter  Google Scholar 

  • Opdyke, B.D. and Walker, J.C.G., 1992. Return of the coral reef hypothesis: basin to shelf partitioning of CaC03 and its effects on atmospheric CO2. Geology, 20: 733–736.

    Article  Google Scholar 

  • Otto, S., 1996. Die Bedeutung von gelostem organischen Kohlenstoff (DOC) fur den KohlenstofffluB im Ozean. Berichte, 87, Fachbereich Geowissenschaften, Universitat Bremen, 150 pp.

    Google Scholar 

  • Palmer, A.N., 1991. The origin and morphology of limestone caves. Geological Society American Bulletin, 103: 1–21.

    Article  Google Scholar 

  • Parkhurst, D.L., Thorstensen, D.C. and Plummer, L.N., 1980. PHREEQE — a computer program for geochemical calculations. Water-Recources Invest. Report, 80–96, US Geol. Surv., 219 pp.

    Google Scholar 

  • Parkhurst, D.L., 1995. User’s guide to PHREEQC: a computer model for speciation, reaction-path, advective-transport, and inverse geochemical calculation. Water-Resources Invest. Report, 95–4227, US Geol. Surv., 143 pp.

    Google Scholar 

  • Plummer, L.N., Wigley, T.M.L. and Parkhurst, D.L., 1978. The kinetics of calcite dissolution in C02-water systems at 5°C to 60°C and 0.0 to 1.0 atm CO2. Am. J. Sci., 278: 179–216.

    Article  Google Scholar 

  • Plummer, L.N., Wigley, T.M.L. and Parkhurst, D.L., 1979. Critical review of the kinetics of calcite dissolution and precipitation. In: Jenne, E.A. (ed), Chemical modelling in aqueous systems. Am. Chem. Soc, Symp. Ser., 93, pp. 537–572.

    Chapter  Google Scholar 

  • Ragueneau, O., Treguer, P., Anderson, R.F., Brezinski, M.A., DeMaster, D.J., Dugdale, R.C., Dymond, J., Fischer, G., Francois, R., Heinze, C, Leynaert, A., Maier-Reimer, E., Martin-Jezequel, V., Nelson, D.M. and Queguiner, B., subm. Understanding the Si cycle in the modern ocean: A pre-requisite for the use of biogenic opal as a paleoproductivity proxy. Global and Planetary Change.

    Google Scholar 

  • Redfield, A.C., 1958. The biological control of chemical factors in the environment. Am. Scientist, 46: 206–2226.

    Google Scholar 

  • Reimers, C.E., Jahnke, R.H. and McCorkle, D.C, 1992. Carbon fluxes and burial rates over the continental slope and rise off central California with implications for the global carbon cycle. Global Biogeochemical Cycles, 6: 199–224.

    Article  Google Scholar 

  • Roberts, H.H. and Macintyre, I.G. (eds), 1988. Special issue: Halimeda. Coral Reefs, 6(3/4), 121–280.

    Google Scholar 

  • Roy, R.N., Roy, L.N., Vogel, K.M., Moore, C.P., Pearson, T., Good, C.E., Millero, F.J. and Campbell, D.M., 1993. Determination of the ionization Constance of cabonic acid in seawater. Marine Chemistry, 44: 249–268.

    Article  Google Scholar 

  • Siegenthaler, H.H. and Wenk, T., 1984. Rapid atmospheric C02 variations and ocean circulation. Nature, 308: 624–626.

    Article  Google Scholar 

  • Sundquist, E.T. and Broeker, W.S., 1985. The carbon cycles and atmospheric C02: natural variations archean to present. American Geophysical Union, Washington, D.C, 627 pp.

    Book  Google Scholar 

  • Svensson, U. and Dreybrodt, W., 1992. Dissolution kinetics of natural calcite minerals in C02-water systems approaching calcite equilibrium. Chemical Geology, 100: 129–145.

    Article  Google Scholar 

  • Wolf-Gladrow, D., 1994. The ocean as part of the global carbon cycle. Environ. Sci. & Pollut. Res., 1: 99–106.

    Article  Google Scholar 

  • Wollast, R., 1994. The relativ importance of biomineralisation and dissolution of CaC03 in the global carbon cycle. In: Doumenge, F., Allemand, D. and Toulemont, A. (eds), Past and present biomineralisation processes: Considerations about the carbonate cycle. Bull, de l’lnstitute oceanographique, 13, Monaco, pp. 13–35.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schneider, R.R., Schulz, H.D., Hensen, C. (2000). Marine Carbonates: Their Formation and Destruction. In: Schulz, H.D., Zabel, M. (eds) Marine Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04242-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04242-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04244-1

  • Online ISBN: 978-3-662-04242-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics