Skip to main content

Archean Stromatolites as Microbial Archives

  • Chapter
Microbial Sediments

Abstract

Stromatolites are morphologically circumscribed accretionary growth structures with a primary lamination that is, or may be, biologically influenced (biogenic). They are found in Archean sedimentary carbonate rocks, almost always associated with extensive volcanic sequences. Thirty-two occurrences have been reported from n small regional clusters representing the world’s principal preserved Archean cratons: North America 16, Africa 7, Australia 5, Asia 3, and Europe s; none are presently known from Archean rocks of South America and Antarctica; less than two dozen of the occurrences are viewed as definitely Archean and stromatolitic. The earliest stromatolite records date back to nearly 3.5 Ga, and their worldwide distribution and abundance increase as time progresses.

Morphological types include structures with flat, convex-up, concave-up, and globoidal laminae; stacking patterns producing nodular, columnar (unbranched as well as branched), and oncoidal forms are represented. The observed diameters of the structures show a gradual increase in size as the stratigraphic column is ascended, spread over two orders of magnitude in geon 34 (centimetric to decimetric), but ranging over six orders of magnitude by geon 25 (sub-millimetric to dekametric). Unlike Proterozoic stromatolites, most are developed in limestones rather than dolostones, with sideritic/ankeritic and cherty types also present. Microfossils are only very rarely preserved. Ministromatolites with radial-fibrous microstructure, probably almost exclusively the result of chemical precipitation, developed after 3.0 Ga, as did mesoscopic aragonite/calcite crystal fans, indicating carbonate supersaturation of ambient Meso-and Neoarchean ocean waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Altermann W, Wotherspoon JMcD (1995) The carbonates of the Transvaal and Griqualand West sequences of the Kaapvaal craton, with special reference to the Lime Acres limestone deposit. Miner Deposita 30: 24–134

    Article  Google Scholar 

  • Awramik SM (1991) Archaean and Proterozoic stromatolites. In: Riding R (ed), Calcareous algae and stromatolites. Springer, Berlin Heidelberg New York, pp 289–304

    Chapter  Google Scholar 

  • Awramik SM (1992) The history and significance of stromatolites. In: Schidlowski M et al. (eds) Early Organic Evolution: implications for mineral and energy resources. Springer, Berlin Heidelberg New York, pp 435–449

    Chapter  Google Scholar 

  • Bertrand-Sarfati J, Eriksson KA (1977) Columnar stromatolites from the Early Proterozoic Schmidtsdrift Formation, northern Cape Province, South Africa. Part 1. Systematic and diagnostic features. Palaeontol Afr 20: 1–26

    Google Scholar 

  • Beukes NJ (1987) Facies relationships, depositional environments and diagenesis in a major Early Proterozoic stromatolitic carbonate platform to basinal sequence, Campbellrand Subgroup, Transvaal Supergroup, southern Africa. Sediment Geol 54: 1–46

    Article  Google Scholar 

  • Bowring SA, Williams IS, Compston W (1989) 3.986 Ga gneisses from the Slave province, Northwest Territories, Canada. Geology 17: 971–975

    Article  Google Scholar 

  • Buick R (1984) Carbonaceous filaments from North Pole, western Australia: are they fossil bacteria in Archaean stromatolites? Precambrian Res 24: 157–172

    Article  Google Scholar 

  • Buick R, Groves DI, Dunlop JSR (1995) Abiological origin of described stromatolites older than 3.2 Ga: comment and reply. Comment. Geology 23: 191

    Article  Google Scholar 

  • Buick R, Dunlop JSR, Groves DI (1981) Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa 5: 161–181

    Article  Google Scholar 

  • Burne RV, Moore LS (1987) Benthic microbial communities and microbialites. Baas Becking Geobiological Laboratory, Annu Rep 1985, pp 10–12

    Google Scholar 

  • Cady SL, Farmer J, Des Marais DJ, Blake DF (1995) Columnar and spicular geyserites from Yellowstone National Park, WY; scanning and transmission electron microscopy evidence for biogenicity. Geol Soc Am, Abstr Progr 27 (6): 305

    Google Scholar 

  • Cloud PE Jr, Semikhatov MA (1969) Proterozoic stromatolite zonation. Am J Sci 267: 1017–1061

    Article  Google Scholar 

  • Cloud P (1972) A working model of the primitive Earth. Am J Sci 272: 537–548

    Article  Google Scholar 

  • Cloud PE Jr (1976) Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiol 2: 351–387

    Google Scholar 

  • Compston W, Pidgeon RT (1986) Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321: 766–769

    Article  Google Scholar 

  • de la Hunty L.E (5963) The geology of the manganese deposits of Western Australia. Geol Sury Western Aus Bull n6

    Google Scholar 

  • de la Hunty LE (1964) Balfour-Downs, Western Australia. Geol Sury Western Australia. 1:250,000 Geological Series, Sheet SF/51–9, Explanatary Notes

    Google Scholar 

  • Farmer JD, Des Marais DJ (1994) Exopaleontology and the search for a fossil record on Mars. Lunar Planet Sci Conf 25: 367–368

    Google Scholar 

  • Froude DO, Ireland TR, Kinny PD, Williams IS, Compston W, Williams IR, Myers JS (1983) Ion microprobe identification of 4100–4200 Myr-old terrestrial zircons. Nature 304: 616–618

    Article  Google Scholar 

  • Goodwin AM (1991) Precambrian geology - the dynamic evolution of the continental crust. Academic Press, London

    Google Scholar 

  • Grey K (1984) Abiogenic stromatoloids from the Warrawoona Group (Early Archaean), Shaw River, Marble Bar, 1:250 000 Sheet area. Geol Sury Western Aust, Palaeontology Report 74 /84

    Google Scholar 

  • Grotzinger JP (1989) Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. In: Crevello PD, Wilson JL, Sarg JF, Reed JF (eds) Controls on carbonate platform and basin development. Soc Econ Paleont Mineral, Spec Publ 4479–106

    Google Scholar 

  • Hofmann HJ (1969) Attributes of stromatolites. Geol Sury Can Pap 69–39

    Google Scholar 

  • Hofmann HJ (1971) Precambrian fossils, pseudofossils, and problematica in Canada. Geol Sury Can Bull 189

    Google Scholar 

  • Hofmann HJ (1972) Precambrian remains in Canada: fossils, dubiofossils, and pseudofossils. Int Geol Cong 24th Sess, Montreal, Proc Sect 1: 20–30

    Google Scholar 

  • Hofmann HJ (1973) Stromatolites: characteristics and utility. Earth-Sci Rev 9: 339–373

    Article  Google Scholar 

  • Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Can- ada: significance and systematics. J Paleontol 50: 1040–1073

    Google Scholar 

  • Hofmann HJ (1989) Size classification of stromatolites. Stromatolite Newslett 14: 36

    Google Scholar 

  • Hofmann HJ (1990) Precambrian time units and nomenclature–the geon concept. Geology 18: 340–341

    Article  Google Scholar 

  • Hofmann HJ, Grey K, Hickman AH, Thorpe RI (1999) Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Autralia. Geol Soc Amer Bull 11: 1256–1262

    Article  Google Scholar 

  • James HL (1978) Subdivision of the Precambrian–a brief review and a report on recent decisions by the Subcommission on Precambrian Stratigraphy. Precambrian Res 7: 193–204

    Article  Google Scholar 

  • Jolliffe AW (1955) Geology and iron ores of Steep Rock Lake. Econ Geol 50: 373–398

    Article  Google Scholar 

  • Knoll AH, Golubic S (1979) Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Res 10: 115–151

    Article  Google Scholar 

  • Lanier WP (1986) Approximate growth rates of Early Proterozoic microstromatolites as deduced by biomass productivity. Palaios 6: 525–542

    Article  Google Scholar 

  • Lanier WP (1988) Structure and morphogenesis of microstromatolites from the Transvaal Supergroup, South Africa. J Sediment Petrol 58: 89–99

    Google Scholar 

  • Lawson AC (1912) The geology of Steeprock Lake, Ontario. Geol Sury Can Mem 28: 7–15

    Google Scholar 

  • Lowe DR (1980) Stromatolites 3,400-Myr old from the Archaean of Western Australia. Nature 284: 441–443

    Article  Google Scholar 

  • Lowe DR (1994) Abiological origin of described stromatolites older than 3.2 Ga. Geology 22: 387–390

    Article  Google Scholar 

  • Lowe DR (1995) Abiological origin of described stromatolites older than 3.2 Ga: comment and reply. Reply. Geology 23: 191–192

    Article  Google Scholar 

  • Lumbers SB, Card KD (1991) Chronometric subdivision of the Archean. Geol Assoc. Canada, Geology 20(3)56–57

    Google Scholar 

  • Macgregor AM (1941) A pre-Cambrian limestone in Southern Rhodesia. Geol Soc S Afr Trans 43: 9–15

    Google Scholar 

  • Nisbet EG (1987) The Beginning of life, Chapter 4. In: Nisbet EG (ed) The young earth–an introduction to Archaean geology, Allen and Unwin, Boston, pp 101–145

    Google Scholar 

  • Raaben ME (1969) Columnar stromatolites and Late Precambrian stratigraphy. Am J Sci 267: 1–18

    Article  Google Scholar 

  • Rothpletz A (1916) Über die systematische Deutung und die strati-graphische Stellung der ältesten Versteinerungen Europas und Nordamerikas mit bedonderer Berücksichtigung der Cryptozoen und Oolithe. Über Cryptozoon, Eozoon, und Atikokania. Bayerische Akad Wissenschaften, Abh Math-Physik K128 (4): 92

    Google Scholar 

  • Schopf JW (1994) The oldest known records of life: Early Archean stromatolites, microfossils, and organic matter. In: Bengtson S (ed) Early life on Earth. Nobel Symposium 84. Columbia Univ Press, New York, pp 193–206

    Google Scholar 

  • Simonson BM, Schubel KA, Hassler SW (1993) Carbonate sedimentology of the early Precambrian Hamersley Group of Western Australia. Precambrian Res 60: 287–335

    Article  Google Scholar 

  • Sumner DY, Bowring SA (1996) U-Pb geochronologic constraints on deposition of the Campbellrand Subgroup, Transvaal Supergroup, South Africa. Precambrian Res 79: 25–35

    Article  Google Scholar 

  • Sumner DY, Grotzinger JP (1996a) Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? Geology 24: 119–122

    Article  Google Scholar 

  • Sumner DY, Grotzinger JP (1996b) Herringbone calcite - petrography and environmental significance. J Sedimentary Res, Sect A A66: 419–429

    Google Scholar 

  • Truswell JF, Eriksson KA (1973) Stromatolite associations and their palaeoenvironmental significance: a re-appraisal of a Lower Proterozoic locality from the Northern Cape Province, South Africa. Sediment Geol 10: 1–23

    Article  Google Scholar 

  • Truswell JF, Eriksson KA (1975) A palaeoenvironmental interpretation of the Early Proterozoic Malmani Dolomite from Zwartkops, South Africa. Precambrian Res 2: 277–303

    Article  Google Scholar 

  • Walcott CD (1912) Notes on fossils from limestone of Steeprock series, Ontario, Canada. Geol Sury Can, Mem 28: 16–23

    Google Scholar 

  • Walter MR (1972) Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian. Palaeontol Assoc Spec Pap Palaeontol, no 11

    Google Scholar 

  • Walter MR (ed) (1976) Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam

    Google Scholar 

  • Walter MR (1978) Recognition and significance of Archaean stromatolites. In: Archaean cherty metasediments:their sedimentol-

    Google Scholar 

  • ogy, micropalaeontology, biogeochemistry, and significance to mineralization. Univ Western Aust, Spec Publ 2a-10

    Google Scholar 

  • Walter MR (1983) Archean stromatolites: evidence of the Earth’s earliest benthos. In: Schopf JW (ed) Earth’s earliest biosphere–its origin and evolution. Princeton Univ Press, Princeton, pp 187–213

    Google Scholar 

  • Walter MR (1994) Stromatolites: the main geological source of information on the evolution of the early benthos. In: Bengtson S (ed) Early life on Earth. Nobel Symposium 84. Columbia Univ Press, New York, pp 270–286

    Google Scholar 

  • Walter MR, Buick R, Dunlop JSR (1980) Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 248443–445

    Google Scholar 

  • Walter MR, Grotzinger JP, Schopf JW (1992) Proterozoic stromatolites. In: Schopf JW, Klein C (eds) The Proterozoic biosphere–a multidisciplinary study. Cambridge Univ Press, Cambridge, pp 253–260

    Google Scholar 

  • Wilson AH, Versfeld JA (1994) The early Archean Nondweni green-stone belt, southern Kaapvaal Craton, South Africa, Part I. Stratigraphy, sedimentology, mineralization and depositional environment. Precambrian Res 67: 243–276

    Article  Google Scholar 

  • Winter H de la R (1963) Algal stromatolites in the sediments of the Ventersdorp System. Geol Soc S Afr Trans 65: 115–121

    Google Scholar 

  • Young RB (1928) Pressure phenomena in the dolomitic limestones of the Campbell Rand Series in Griqualand West. Geol Soc S Afr Trans 31: 157–165

    Google Scholar 

  • Young RB (1933) The occurrence of stromatolitic or algal limestone in the Campbell Rand Series of Griqualand West. Geol Soc S Afr Trans 35: 29–36

    Google Scholar 

  • Young RB (1934) Conditions of deposition of the Dolomite Series. Geol Soc S Afr Trans 36: 121–135

    Google Scholar 

  • Young RB (1935) A comparison of certain stromatolitic rocks in the Dolomite Series of South Africa with modern algal sediments in the Bahamas. Geol Soc S Afr Trans 37: 153–162

    Google Scholar 

  • Young RB (1940) Note on an unusual type of concretionary structure in limestones of the Dolomite Series. Geol Soc S Afr Trans 43: 23–25

    Google Scholar 

  • Young RB (1940) Further notes on algal structures in the Dolomite Series. Geol Soc S Afr Trans 43: 17–21

    Google Scholar 

  • Young RB (1944) The domical-columnar structure and other minor deformations in the Dolomite Series. Geol Soc S Afr Trans 46: 91–105

    Google Scholar 

  • Young RB, Mendelssohn E (1949) Domed algal growths in the Dolomite Series of South Africa, with associated fossil remains. Geol Soc S Afr Trans 51: 53–62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hofmann, H.J. (2000). Archean Stromatolites as Microbial Archives. In: Riding, R.E., Awramik, S.M. (eds) Microbial Sediments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04036-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04036-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08275-7

  • Online ISBN: 978-3-662-04036-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics