Skip to main content

Epidermal Cell Migration and Wound Repair

  • Chapter
Biology of the Integument

Abstract

The primary role of the integument is that of a barrier facilitating internal homeostasis and preventing the entry of pathogens from the environment into the body. This basic structure must be repaired if the animal is to survive injury. Normal repair follows an orderly sequence of cellular and biochemical events, initiated by injury and resulting in formation of new tissue. Restoration of epithelial continuity has been a subject of study for many years (for review see, e.g. Marchand 1901, Arey 1936, Weiss 1961, Maibach and Rovee 1973, Lacour and Ortonne 1983). Experimental investigation is impeded by technical and structural problems related to the complex microenvironment of a healing wound, therefore numerous experimental models have been introduced to reduce this complexity, for example stripping of epidermis (e.g. Christophers 1973), suction-induced subepidermal blisters (Krawczyk 1971, 1973), the rabbit ear chamber (Clark and Clark 1953), mouse ear in vitro (Gradwohl 1978), cornea epithelium in situ and in vitro (Takeuchi 1983, Honda et al. 1982), palate mucosa in organ culture (Squier et al. 1983), hamster tracheal epithelium (Keenan et al. 1982), embryonic chick skin in culture (Thevenet 1983), tadpole fins in culture (Bereiter-Hahn 1967, Radice 1980a, b), implantation of material in newt skin (Donaldson and Mahan 1984 a, b), sheets of cultured endothelial cells (Wong and Gotlieb 1984). These models refer in particular to re-epithelialization and not to the inflammatory responses evoked by injury. Mechanical injury is preferred to wounds made by burning, or by local application of toxic substances. The influence of very weak impact was studied in fish skin (Pickering et al. 1982) and cornea (Sherrard 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abatangelo G, Martelli M, Vecchia P (1983) Healing of hyaluronic acid-enriched wounds: histological observations. J Surg Res 35: 410–416

    Article  PubMed  CAS  Google Scholar 

  • Abercrombie M, Flint MH, James DW (1954) Collagen formation and wound contracting during repair of small excised wounds in the skin of rats. J Embryol Exp Morphol 2: 264–274

    Google Scholar 

  • Aho HJ, Viljantom J, Raekallio J. Pelliniemi LJ (1983) Ultrastructural characteristic of cells in human wound collected by cellstic device. J Surg Res 35: 498–506

    Article  PubMed  CAS  Google Scholar 

  • Alexander SA (1981) Patterns of epidermal cell polarity in healing open wounds. J Surg Res 31: 456–462

    Article  PubMed  CAS  Google Scholar 

  • Anderson CD, Roberts RJ (1975) A comparison of the effects of temperature on wound healing in a tropical and a temperate teleost. J Fish Biol 7: 173–182

    Article  Google Scholar 

  • Aoyagi T, Adachi K. Halprin DK, Levine V, Woodyard CW (1981) The effect of histamine on epidermal outgrowth: Its possible dual role as an inhibitor and stimulator. J Invest Dermatol 76: 24–27

    Google Scholar 

  • Arey LB (1936) Wound healing. Physiol Rev 16: 327

    Google Scholar 

  • Baier RE (1973) Surface chemistry in epidermal repair. In: Maibach HI, Rovee DT (eds) Epidermal wound healing. Year Book Med Publ, Chicago, pp 27–48

    Google Scholar 

  • Beerens EGJ, Slot JW, Lenn JC van der (1975) Rapid regeneration of the dermal-epidermal junction after partial separation with vacuum. An electron microscopic study. J Invest Dermatol 65: 513–521

    Google Scholar 

  • Bell E, Ivarsson B, Merrill C (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliverative potential in vitro. Proc Natl Acad Sci USA 76: 1274–1278

    Article  PubMed  CAS  Google Scholar 

  • Bereiter-Hahn J (1967) Dissoziation and Reaggregation von Epidermiszellen der Larven on Xenopus laevis (Daudin) in vitro. Z Zellforsch 79: 118–156

    Article  PubMed  CAS  Google Scholar 

  • Bereiter-Hahn J (1985) Architecture of tissue cells. The structural basis which determines shape and locomotion of cells. Acta Biotheor (Leiden) (in press)

    Google Scholar 

  • Bereiter-Hahn J, Osborn M, Weber K, Vöth M (1979) Filament organization and formation of microridges at the surface of fish epidermis. J Ultrastruct Res 69: 316–330

    Article  PubMed  CAS  Google Scholar 

  • Bereiter-Hahn J, Strohmeier R, Kunzenbacher I, Beck K, Vöth M (1981) Locomotion of Xenopus epidermis cells in primary culture. J Cell Sci 52: 289–311

    PubMed  CAS  Google Scholar 

  • Bereiter-Hahn J, Strohmeier R, Beck K (1983) Determination of the thickness profile of cells with the reflection contrast microscope. Sci Technol Inf 8: 125–128

    Google Scholar 

  • Bereiter-Hahn J, Tillmann U, Vöth M (1984) Interaction of metabolic inhibitors with actin fibrils. Cell Tissue Res 238: 129–134

    Article  PubMed  CAS  Google Scholar 

  • Bessis M, Boisefleury-Chavance A (1984) Facts and speculation about necrotaxis ( Chemotaxis toward a dying cell ). Blood Cells 10: 5–22

    Google Scholar 

  • Birdsell DC, Hein Ks, Lindsay RL (1979) The theoretically ideal donor site dressing. Ann Plast Surg 2: 535–537

    Article  PubMed  CAS  Google Scholar 

  • Bourne GH (1981) Nutrition and wound healing. In: Glynn LE (ed) Handbook of inflammation, vol III, Elsevier Press, Amsterdam, Chap 6, pp 211–242

    Google Scholar 

  • Burger MM, Jumblatt J (1977) Membrane involvement in cell-cell interactions: a two-component model system for cellular recognition that does not require live cells. In: Lash JM, Burger MM (eds) Cell and tissue interactions. Raven Press, New York, pp 155–172

    Google Scholar 

  • Castor C (1981) Autacoid regulation of wound healing. In: Glynn LE (ed) Handbook of inflammation, vol III. Elsevier Press, Amsterdam, pp 177–209

    Google Scholar 

  • Casley-Smith JR, Vincent AH (1980) Variations in the numbers and dimensions of tissue channels after injury. Tissue Cell 12: 761–771

    Article  PubMed  CAS  Google Scholar 

  • Chiakulus JJ (1952) The role of tissue specifity in the healing of epithelial wounds. J Exp Zool 121: 383–417

    Article  Google Scholar 

  • Christophers E (1973) Kinetic aspects of epidermal healing. In: Maibach HI, Rovee DT (eds) Epidermal wound healing. Year Book Med Publ, Chicago, pp 53–69

    Google Scholar 

  • Church JCT, Warren DJ (1968) Wound healing in the web membrane of the fruit bat. Br J Surg 55: 26–31

    Article  PubMed  CAS  Google Scholar 

  • Clark ER, Clark EL (1953) Growth and behavior of epidermis as observed microscopically in observation chambers inserted in ears of rabbits. Am J Anat 93: 171–219

    Article  PubMed  CAS  Google Scholar 

  • Clark RA, Pella PD, Manseau E, Lanigan JM, Dvorak HF, Colvin RB (1982a) Blood vessel fibronectin increases in conjunction with endothelial cell proliferation and capillary ingrowth during wound healing. J Invest Dermatol 79: 269–276

    Article  PubMed  CAS  Google Scholar 

  • Clark RA, Lanigan JM, DellaPelle P, Manseau E, Dvorak HF, Colvin RB (1982 b) Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J Invest Dermatol 79: 264–269

    Google Scholar 

  • Croft CB, Tarin D (1970) Ultrastructural studies of wound healing in mouse skin. I. Epithelial behaviour. J Anat 105: 63–77

    Google Scholar 

  • Dayan D, Barr-Nea L, Sandbank M, Binderman I, Mechanic GL, lshay JS (1983) Oriental hornet venom enhances wound healing and repair in rat skin, possibly through its collagenolytic activity. Acta Trop (Basel) 40: 147–153

    CAS  Google Scholar 

  • Denefle JP, Lechaire JP (1984) Epithelial locomotion and differentiation in frog skin cultures. Tissue Cell 16: 499–517

    Article  PubMed  CAS  Google Scholar 

  • Derby A (1978) Wound healing in tadpole tailfin pieces in in vitro. J Exp Zool 205: 277–284

    Article  PubMed  CAS  Google Scholar 

  • Devitt H, Clark MA, Marks R, Picton W (1978) A quantitative, approach to epidermal wound healing: the effect of dexamethasone on regenerating epithelium. Br J Dermatol 98: 315–323

    Article  PubMed  CAS  Google Scholar 

  • DiPasquale A (1975a) Locomotory activity of epithelial cells in culture. Exp Cell Res 94: 191–215

    Article  PubMed  CAS  Google Scholar 

  • DiPasquale A (1975b) Locomotion of epithelial cells: factors involved in extension of the leading edge. Exp Cell Res 95: 425–439

    Article  PubMed  CAS  Google Scholar 

  • Donaldson DJ, Dunlap MK (1981) Epidermal cell migration during attempted closure of skin wounds in the adult newt: observations based on cytochalasin treatment and scanning electron microscopy. J Exp Zool 217: 33–43

    Article  PubMed  CAS  Google Scholar 

  • Donaldson DJ, Mahan JT (1983) Fibrinogen and fibronectin as substrates for epidermal cell migration during wound closure. J Cell Sci 62: 117–127

    PubMed  CAS  Google Scholar 

  • Donaldson DJ, Mahan JT (1984a) Epidermal cell migration on laminin-coated substrates: Comparison with other extracellular matrix and non-matrix proteins. Cell Tissue Res (in press)

    Google Scholar 

  • Donaldson DJ, Mahan JT (1984b) Inability of newt epidermal cells to migrate over concanavalin A-coated substrates. J Exp Zool (in press)

    Google Scholar 

  • Donaldson DJ, Mason JM (1978) Inhibition of protein synthesis in newt epidermal cells: effects on cell migration and concanavalin A-mediated inhibition of migration in vivo. Growth 42: 243–252

    Google Scholar 

  • Donaldson DJ, Smith GN, Kang AH (1982) Epidermal cell migration on collagen and collagen-derived peptides. J Cell Sci 57: 15–23

    PubMed  CAS  Google Scholar 

  • Doughman DJ, Horn D van, Rodman WP, Byrnes P, Lindstrom RL (1976) Human corneal endothelial layer repair during organ culture. Arch Ophthalmol 94: 1791–1796

    Article  PubMed  CAS  Google Scholar 

  • Dunlap MK (1980) Cyclic AMP levels in migrating and non-migrating newt epidermal cells. J Cell Physiol 104: 367–373

    Article  PubMed  CAS  Google Scholar 

  • Dunlap MK, Donaldson DJ (1980) Effect on cAMP and related compounds on newt epidermal cell migration both in vivo and in vitro. J Exp Zool 212: 13–19

    Article  PubMed  CAS  Google Scholar 

  • Dunn GA (1980) Mechanism of fibroblast locomotion. In: Curtis ASG, Pitts JD (eds) Cell adhesion and motility. Cambridge Univ Press, Cambridge, pp 409–423

    Google Scholar 

  • Dunn GA, Heath JP (1976) A new hypothesis of contact guidance in tissue cells. Exp Cell Res 101: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Eckert BS, Caputi SE, Warren RH (1984) Dynamics of keratin filaments and the intermediate filament distribution center during shape change in PtK 1 cells. Cell Motil 4: 169–181

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich HP, Wyler DJ (1983) Fibroblast contraction of collagen lattices in vitro: Inhibition by chronic inflammatory cell mediators. J Cell Physiol 116: 345–351

    Google Scholar 

  • Epstein B, Epstein JH, Fukuyama K (1983) Autoradiographic study of colchicine inhibition of DNA synthesis and cell migration in hairless mouse epidermis in vivo. Cell Tissue Kinet 16: 313–319

    PubMed  CAS  Google Scholar 

  • Euteneuer U, Schliwa M (1984) Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature 310: 58–61

    Article  PubMed  CAS  Google Scholar 

  • Finn JP, Nielson NO (1971) The inflammatory response of rainbow trout. J Fish Biol 3: 463–478

    Article  Google Scholar 

  • Fishel R, Barbul H, Wasserkrug L, Penberthy LT, Rettura G, Efron G (1983) Cyclosporine a impairs wound healing in rats. J Surg Res 34: 572–575

    Article  PubMed  CAS  Google Scholar 

  • Fleischer M, Wohlfahrt-Bottermann KE (1975) Correlation between tension force generation, fibrillogenesis and ultrastructure of cytoplasmic actomyosin during isometric and isotonic contractions of protoplasmic strands. Cytobiology 10: 339–365

    Google Scholar 

  • Frietsche RA, Bailey CF (1980) The histology and calcification of regenerating scales in the blackspottet topminnow, Fundulus olivaceus ( Storer ). J Fish Biol 16: 693–700

    Google Scholar 

  • Fujii T, Hayakawa I (1983) A histological and electron-microscopic study of the cell types involved in rejection of skin allografts in ammocoetes. Cell Tissue Res 231: 301–312

    Article  PubMed  CAS  Google Scholar 

  • Fujinami N (1976) Studies on the mechanism of circus movement in dissociated embryonic cells of a teleost, Oryzyas latipes: Fine-structural. J Cell Sci 22: 133–147

    PubMed  CAS  Google Scholar 

  • Gabbiani G, Chapponie C, Hüttner I (1978) Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing. J Cell Biol 76: 561–568

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Velasco J (1973) Keloids and hypertrophie scars. In: Maibach HI, Rovee DT (eds) Epidermal wound healing. Year Book Med Publ, Chicago, pp 280–289

    Google Scholar 

  • Gay S, Viljanto J, Raekallio J, Penttinen R (1978) Collagen types in early phases of wound healing in children. Acta Chir Scand 144: 205–211

    PubMed  CAS  Google Scholar 

  • Gaylarde PM, Sarkany I (1976) Cell migration and DNA synthesis in organ culture of human skin. Br J Dermatol 92: 375–380

    Article  Google Scholar 

  • Gibbins JR (1973) Epithelial migration in organ culture. Role of protein synthesis as determined by metabolic inhibitors. Exp Cell Res 80: 281–290

    Article  PubMed  CAS  Google Scholar 

  • Gibbins JR (1976) Epithelial migration in organ culture. Effect of incubation in unsupplemented balanced salt solution. Exp Cell Res 100: 374–382

    Article  PubMed  CAS  Google Scholar 

  • Gibbins JR (1978) Epithelial migration in organ culture. A morphological and time lapse cinematographic analysis of migrating stratified squamous epithelium. Pathology 10: 207–218

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist T, Martin AM (1983) Wound treatment with Sorbsan — an alginate fibre dressing. Biomaterials 4: 317–320

    Article  PubMed  CAS  Google Scholar 

  • Gill BP, Atwood JR (1981) Reciprocy and helicacy used to relate mEGF and wound heating. Nurs Res 30: 68–72

    Article  PubMed  CAS  Google Scholar 

  • Gipson IK, Kiorpes TC (1982) Epithelial sheet movement: Protein and glycoprotein synthesis. Dev Biol 92: 259–262

    Google Scholar 

  • Gipson IK, Riddle CV, Kiorpes TC, Spurr SH (1983a) Lectin binding to cell surfaces: Comparisons between normal and migrating corneal epithelium. Dev Biol 96: 337–345

    Google Scholar 

  • Gipson IK, Grill SM, Spurr SJ, Brennan SJ (1983 b) Hemidesmosome formation in vitro. J Cell Biol 97: 849–857

    Google Scholar 

  • Gordon SR, Essner E, Rothstein H (1982) In situ demonstration of actin in normal and injured ocular tissues using 7-nitrobenz-2-oxa-1,3-diazole phallacidin. Cell Motil 4: 343–354

    Google Scholar 

  • Goss RJ (1969) Principles of regeneration. Academic Press, London New York, p 287

    Google Scholar 

  • Goss RJ (1973) Wound healing and antler regeneration. In: Maibach HI, Rovee DT (eds) Epidermal wound healing. Year Book Med Publ, Chicago, pp 27–48

    Google Scholar 

  • Goss RJ, Grimes LN (1975) Epidermal downgrowths in regenerating rabbit ear holes. J M orphol 146: 533–542

    CAS  Google Scholar 

  • Gradwohl PR (1978) The proliferation of epidermal cells in mouse ear organ culture. Arch Dermatol Res 263: 273–281

    Article  PubMed  CAS  Google Scholar 

  • Grillo HC, Gross J (1967) Collagenolytic activity during mammalian wound repair. Dev Biol 15: 300–317

    Article  PubMed  CAS  Google Scholar 

  • Grinnell F, Billingham RE, Burgess L (1981) Distribution of fibronectin during wound healing in vivo. J Invest Dermatol 76: 181–189

    Article  PubMed  CAS  Google Scholar 

  • McGuire J, Lazarides E, DiPasquale A (1977) Actin is present in mammalian keratinocytes. In: Seiji M, Bernstein IA (eds) Biochemistry of cutaneous epidermal differentiation. Univ Park Press, Baltimore London Tokyo, pp 69–80

    Google Scholar 

  • Haemmerli G, Arnold B, Sträuli P (1983) Cellular motility on glass and in tissues: similarities and dissimilarities. Cell Biol Int Rep 7: 709–725

    Article  PubMed  CAS  Google Scholar 

  • Hanke W (1962) Die Beeinflussung der Wundheilung bei Säugetieren durch histostatische and morphogenetische Substanzen. Wilhelm Roux ’ Arch Entwicklungsmech Org 153: 669–702

    Article  Google Scholar 

  • Harris AK (1973) Cell surface movements related to cell locomotion. In: Ciba Found Symp Locomotion of Tissue cells. Elsevier/North Holland, Amsterdam New York, pp 3–26

    Google Scholar 

  • Heaysman JEM, Pegrum SM (1982) Early cell contacts in culture. In: Bellairs R, Curtis A, Dunn G (eds) Cell behaviour: a tribute to Michael Abercrombie. Cambridge Univ Press, Cambridge, pp 49–76

    Google Scholar 

  • Honda H, Ogito Y, Higuchi S, Kani K (1982) Cell movements in a living mammalian tissue: Long-term observation of individual cells in wounded corneal endothelial of cats. J Morphol 174: 25–39

    Google Scholar 

  • Honda H, Sohkawa MD, Watanabe K (1983) Geometrical analysis of cells becoming organized into a tensile sheet, the blastular wall, in the starfish. Differentiation 25: 16–22

    Article  Google Scholar 

  • Hunt TK, Knighton DR, Thakral KK, Gooson WH, Adrews WS (1984) Studies of inflammation and wound healing: Angiogenesis and collagen synthesis stimulated in vivo by resident and activated wound macrophages. Surgery 96: 48–54

    Google Scholar 

  • Illingworth CM (1974) Trapped fingers and amputated finger tips in children. J Pediatr Surg 9: 853–858

    Article  PubMed  CAS  Google Scholar 

  • Im LM, Hoopes JE (1983a) Increases in acid proteinase activity during epidermal wound healing. J Surg Res 35: 159–162

    Article  PubMed  CAS  Google Scholar 

  • Im JM, Hoopes JE (1983b) Increases in dihydronicotinamide adenine dinucleotide (NADH) content a a-glycerophosphate dehydrogenase activity in epidermal wound healing (41602). Proc Soc Exp Biol Med 173: 17–20

    PubMed  CAS  Google Scholar 

  • Iwig M, Glaesser D, Bethge M (1981) Cell shape-mediated growth control of lens epithelial cells grown in culture. Exp Cell Res 131: 47–55

    Article  PubMed  CAS  Google Scholar 

  • Jalkanen M, Haapanen T, Lyykäinen AM, Larjava H (1983) Wound fluids mediate granulation tissue growth phases. Cell Biol Int Rep 7: 745–753

    Article  PubMed  CAS  Google Scholar 

  • Jyvaesjaervi S, Hopsu-Havu VK (1976) A model for studies of dermal surface epithelialization: with observations on the effects of dexamethasone and nandrolone decandate. Arzneimittelforsch 26: 443–447

    Google Scholar 

  • Keenan KP, Combs JW, McDowell EM (1982) Regeneration of hamster tracheal epithelium after mechanical injury. I. Focal lesions: Quantitative morphologic study of cell proliferation. Virchows Arch [Cell Pathol] 41: 193–214

    Google Scholar 

  • Keenan KP, Wilson TS, McDowell EM (1983) Regeneration of hamster tracheal epithelium after mechanical injury. IV. Histochemical immunocytochemical and ultrastructural studies. Virchows Arch [Cell Pathol] 43: 214–240

    Google Scholar 

  • Kenyan AJ, Ramos L, Michaels EB (1983) Histamine-induced suppressor macrophage inhibits fibroblast growth and wound healing. Am J Vet Res 44: 2164–2166

    Google Scholar 

  • Kishi JI, Hashimoto Y, Aoyama H, Izawa Y, Hayakawa T (1984) Direct extraction of collage-nase from human post-burn wound tissues. Biomed Res 5: 149–156

    CAS  Google Scholar 

  • Kolega J (1982) Organization of cytoskeletal filaments in relation to motility of epidermal cell clusters. J Cell Biol 95: 325a

    Google Scholar 

  • Korszun AK, Wilton JM, Johnson NM (1981) The in vivo effects of lymphokines on mitotic activity and keratinization in Guinea pig epidermis. J Invest Dermatol 76: 433–437

    Article  PubMed  CAS  Google Scholar 

  • Krawczyk WS (1971) A pattern of epidermal cell migration during wound healing. J Cell Bio! 49: 247–263

    Article  CAS  Google Scholar 

  • Krawczyk WS (1973) Some ultrastructural aspects of epidermal repair in two model wound healing systems. In: Maibach HI, Rovee DT (eds) Epidermal wound healing. Year Book Med Publ, Chicago, pp 27–48

    Google Scholar 

  • Krawczyk WS, Wilgram GF (1973) Hemidesmosome and desmosome morphogenesis during epidermal wound healing. J Ultrastruc Res 45: 93–101

    Article  CAS  Google Scholar 

  • Kunzenbacher I, Bereiter-Hahn J, Osborn M, Weber K (1982) Dynamics of the cytoskeleton of epidermal cells in situ and in culture. Cell Tissue Res 222: 445–457

    Article  PubMed  CAS  Google Scholar 

  • Lacour JP, Ortonne JP (1983) La cicatrisation. Ann Dermatol Venerol 110: 159–173

    CAS  Google Scholar 

  • Lane BP, Gordon RE (1979) Regeneration of vitamin A deficient rat tracheal epithelium after mild mechanical injury. Differentiation 14: 87–93

    Article  PubMed  CAS  Google Scholar 

  • Lash JW (1955) Studies of wound closure in urodeles. J Exp Zool 128: 13–28

    Article  Google Scholar 

  • Lillywhite HB, Maderson PF (1982) Skin structure and permeability. In: Gang C, Pough FH (eds) Biology of the reptilia: Physiology C, Vol 12. Academic Press, London New York, pp 397–442

    Google Scholar 

  • Liversage RA, McLaughlin DS (1983) Effects of delayed amputation on denervated forelimbs of adult newt. J Embryol Exp Morphol 75: 1–10

    PubMed  CAS  Google Scholar 

  • Lundberg C, Lebel L, Gerdin B (1984) Inflammatory reaction in an experimental model of open wounds in the rat. The role of polymorphonuclear leukocytes. Lab Invest 50: 726–732

    Google Scholar 

  • Maderson PFA (1971) The regeneration of caudal epidermal specialization in Lygodactylus picturatus keniensis (Gekkonidae, Lacertilia). J Morphol 134: 467–478

    Article  PubMed  CAS  Google Scholar 

  • Maderson PF, Roth SI (1972) A histological study of the early stages of cutaneous wound healing in lizards in vivo and in vitro. J Exp Zool 180: 175–186

    Article  PubMed  CAS  Google Scholar 

  • Maibach HI, Rovee DT (eds) (1973) Epidermal wound healing. Year Book Med Publ Inc, Chicago, 372

    Google Scholar 

  • Marchand FJ (1901) Der Prozeß der Wundheilung. Dtsch Chir Lief 16

    Google Scholar 

  • Marks R, Bhogal B, Dawber RP (1972) The migratory property of epidermis in vitro. Arch Dermatol Forsch 243: 209–220

    Article  PubMed  CAS  Google Scholar 

  • Masters CJ (1981) Interactions beteween soluble enzyme and subcellular structure. CRC Crit Rev Biochem 11: 105–143

    Article  PubMed  CAS  Google Scholar 

  • Matoltsy AG (1955) In vitro wound repair of adult human skin. Anat Res 122: 581–587

    Article  CAS  Google Scholar 

  • Matoltsy AG, Viziam B (1970) Further observations on epithelialization of small wounds. J Invest Dermatol 55: 20–25

    Article  PubMed  CAS  Google Scholar 

  • Matoltsy AG, Schragger A, Matolsky MN (1962) Observations on regeneration of the skin barrier. J Invest Dermatol 38: 251–253

    Article  PubMed  CAS  Google Scholar 

  • Martinez IR (1973) Fine structural studies of migrating epithelial cells following incision wounds. In: Maibach HI, Rovee DT (eds) Epidermal wound healing. Year Book Ailed Publ Inc, Chicago, pp 323–342

    Google Scholar 

  • McGuire J, Lazarides E, DiPasquale A (1977) Actin is present in mammalian keratinocytes. In: Seiji M, Bernstein IA (eds) Progression of events of epidermal differentiation. Univ Park Press Baltimore London Tokyo, pp 69–80

    Google Scholar 

  • Mittal AK, Bereiter-Hahn J (1985) Ionic control of locomotion and shape of epithelial cells. Cell Motil (in press)

    Google Scholar 

  • Mittal AK, Munshi JS (1974) On the regeneration and repair of superficial wounds in the skin of Rita rita (Ham.) ( Bagridae, pisces ). Acta Anat (Basel) 88: 42–442

    Article  Google Scholar 

  • Mittal AK, Rai AK, Banerjee TK (1978) Studies on the pattern of healing of wounds in the skin of a cat-fish Heteropneustes ossilis (Bloch) ( Heteropneustidae, pisces ). Z Mikrosk Anat Forsch 91: 270–286

    Google Scholar 

  • Moscona AA (1957) The development in vitro of chimeric aggregates of dissociated embryonic chick and mouse cells. Proc Natl Acad Sci USA 43: 184–194

    Article  PubMed  CAS  Google Scholar 

  • Moscona AA (1962) Analysis of cell recombinations in experimental synthesis of tissues in vitro. J Cell Comp Physiol [Suppl 1] 60: 65–80

    Article  Google Scholar 

  • Moscona AA, Hausmann RE (1977) Biological and biochemical studies on embryonic cell—cell recognition. In: Lash JW, Burger MM (eds) Cell and tissue interactions. Raven Press, New York, pp 173–185

    Google Scholar 

  • Nilsson T (1983) Abdominal wound repair. Laegeforeningens, p 20

    Google Scholar 

  • Nishida T, Nakagawa S, Nishibayashi C, Tanaka H, Manabe R (1984) Fibronectin enhancement of corneal epithelial wound healing of rabbits in vitro. Arch Ophthalmol 102: 455–456

    Article  PubMed  CAS  Google Scholar 

  • Odland GF (1977) Progression of events of epidermal differentiation in wound healing. In: Seiji M, Bernstein IA (eds) Biochemistry of cutaneous epidermal differentiation. Univ Park Press Baltimore London Tokyo, pp 29–48

    Google Scholar 

  • Odland G, Ross R (1968) Human wound repair. I. Epidermal regeneration. J Cell Biol 39: 135–168

    Google Scholar 

  • Ooka H, Yamamoto K, Okuma Y, Suga S, Wakasugi M (1975) The migratory activity of rat epidermal cells in vitro-age-related changes and the effect of serum. Exp Gerontol 10: 79–83

    Article  PubMed  CAS  Google Scholar 

  • Orredson SU, Knighton DR, Scheuenstuhl H, Hunt TK (1983) A quantitative in vitro study of fibroblast and endothelial cell migration in response to serum and wound fluid. J Surg Res 35: 249–258

    Article  PubMed  CAS  Google Scholar 

  • Overton J (1962) Desmosome development in normal and reassociating cells in the early chick blastoderm. Dev Biol 4: 532–548

    Article  PubMed  CAS  Google Scholar 

  • Overton J, Culver N (1975) Desmosomes and their components after cell dissociation and reaggregation in the presence of Cytochalasin B. J Exp Zool 185: 341–352

    Article  Google Scholar 

  • Pang SC, Daniels WH, Buck RC (1978) Epidermal migration during the healing of suction blisters in rat skin: A scanning and transmission electron microscopic study. Am J Anat 153: 177–192

    Google Scholar 

  • Pentland AP, Marcelo CL (1983) Modulation of proliferation in epidermal keratinocyte cultures by lowered oxygen tension. Exp Cell Res 145: 31–43

    Article  PubMed  CAS  Google Scholar 

  • Phromsuthirak P (1977) Electron microscopy of wound healing in the skin of Gasterosteus aculeatus. J Fish Biol 11: 193–206

    Article  Google Scholar 

  • Pickering AD, Pottinger TG, Christie P (1982) Recovery of the brown trout, Salmo trutta L., from acute handling stress; a timecourse study. J Fish Biol 20: 229–244

    Article  Google Scholar 

  • Radice GP (1980a) The spreading of epithelial cells during wound closure in Xenopus larvae. Dev Biol 76: 26–46

    Article  PubMed  CAS  Google Scholar 

  • Radice GP (1980b) Locomotion and cell-substratum contacts of Xenopus epidermal cells in vitro and in situ. J Cell Sci 44: 201–223

    PubMed  CAS  Google Scholar 

  • Ratliff DA, Clyne CAC, Chant AD, Webster JH (1984) Prediction of amputation wound healing: the role of transcutaneous P°2 assessment. Br J Surg 71: 219–222

    Article  PubMed  CAS  Google Scholar 

  • Reif WE (1978) Wound healing in sharks. Zoomorphology 90: 101–111

    Article  Google Scholar 

  • Repesh LA, Oberpriller JC (1978) Scanning electron microscopy of epidermal cell migration in wound healing during limb regeneration in the adult newt, Notophthalmus viridescens. Am J Anat 151: 539–556

    Article  PubMed  CAS  Google Scholar 

  • Repesh LA, Oberpriller JC (1980) Ultrastructural studies on migrating epidermal cells during the wound healing stage of regeneration in the adult newt, Notophthalmus viridescens. Am J Anat 159: 187–208

    Article  PubMed  CAS  Google Scholar 

  • Repesh LA, Fitzgerald TJ, Furcht LT (1982) Fibronectin involvement in granulation tissue and wound healing in rabbits. J Histochem Cytochem 30: 351–358

    Article  PubMed  CAS  Google Scholar 

  • Robin JB, Kash RL, Azen SP, Schanzlin DJ (1984) Lack of effect of pilocarpine on corneal epithelial wound healing. Curr Eye Res 3: 403–406

    Article  PubMed  CAS  Google Scholar 

  • Ross RD, Benditt EB (1962) Wound healing and collagen formation. III. A quantitative radioautographic study of the utilization of proline-H3 in wounds from normal and scorbutic guinea pigs. J Cell Biol 15: 99–108

    Article  PubMed  CAS  Google Scholar 

  • Santerre RF, Rich A (1976) Actin accumulation in developing chick brain and other tissues. Dev Biol 54: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Schotté OE, Smith CB (1959) Wound healing processes in amputated mouse digits. Biol Bull 6: 546–561

    Article  Google Scholar 

  • Sciubba JJ, Waterhouse JP, Meyer J (1979) A fine structural comparison of the healing of incisional wounds of mucosa and skin. J Oral Pathol 7: 214–227

    Article  Google Scholar 

  • Sherrard ES (1976) The corneal endothelium in vivo: its response to mild trauma. Exp Eye Res 22: 347–357

    Article  PubMed  CAS  Google Scholar 

  • Shure MS (1982) Direct observation of oriented movement of leukocytes in vivo. Am Soc Cell Biol 314a

    Google Scholar 

  • Sire JY (1984) Fine structure of regenerating scales and their associated cells in the cichlid Hemiochromis bimaculatus (Gill). Cell Tissue Res 237: 537–547

    Article  Google Scholar 

  • Squier CA (1981) The effect of stretching on formation of myofibroblasts in mouse skin. Cell Tissue Res 220: 325–335

    Article  PubMed  CAS  Google Scholar 

  • Squier CA, Leranth CS, Ghoneim S, Kremenak CR (1983) Electron microscopic immunochemical localization of actin in fibroblasts in healing skin and plate wounds of beagle dog. Histochemistry 78: 513–522

    Article  PubMed  CAS  Google Scholar 

  • Stanisstreet M, Wakely J, England MA (1980) Scanning electron microscopy of wound healing in Xenopus and chicken embryos. J Embryol Exp Morphol 59: 341–353

    PubMed  CAS  Google Scholar 

  • Stanley JR, Alvarez OM, Bere EW, Eaglstein WH, Katz SI (1981) Detection of basement membrane zone antigens during epidermal wound healing in pigs. J Invest Dermatol 77: 240–243

    Article  PubMed  CAS  Google Scholar 

  • Stanley JR, Hawley-Nelson P, Yaar M, Martin GR, Katz SI (1982) Laminin and bullous pemphigoid antigen are distinct basement membrane proteins synthesized by epidermal cells. J Invest Dermatol 78: 456–459

    Article  PubMed  CAS  Google Scholar 

  • Stenn KS, Dvoretzky I (1979) Human serum and epithelial spread in tissue culture. Arch Dermatol Res 264: 3–15

    Article  PubMed  CAS  Google Scholar 

  • Stenn KS, Madri JA, Roll FJ (1979) Migrating epidermis produces AB, collagen and requires continual collagen synthesis for movement. Nature 277: 229–232

    Article  PubMed  CAS  Google Scholar 

  • Stossel TP (1982) The structure of cortical cytoplasm. Philos Trans R Soc Lond [Biol] 299: 275–289

    Article  CAS  Google Scholar 

  • Strohmeier R, Bereiter-Hahn J (1984) Control of cell shape and locomotion by external calcium. Exp Cell Res 154: 412–420

    Article  PubMed  CAS  Google Scholar 

  • Strohmeier R, Wolfram H, Bereiter-Hahn J (1980) Migration of epidermal sheets from tadpole tails (Xenopus laevis Daudin) in tissue culture. Eur J Cell Biol 22: 361

    Google Scholar 

  • Takeuchi S (1977a) Wound healing of the cornea in the chick embryo. I. Factors affecting the migration of corneal epithelium. J Fac Sci Univ Tokyo 12: 439–447

    Google Scholar 

  • Takeuchi S (1972 b) Wound healing of the cornea in the chick embryo. II. The stromal wound bed as a substratum for epithelial migration. J Fac Sci Univ Tokyo 12: 449–456

    Google Scholar 

  • Takeuchi S (1976) Wound healing in the cornea of the chick embryo. III. The influence of pore size of millipore filters on the migration of isolated epithelial sheets in culture. Dev Biol 51: 49–62

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi S (1979) Wound healing in the cornea of the chick embryo. IV. Promotion of the migratory activity of isolated corneal epithelium in culture by the application of tension. Dev Biol 70: 232–240

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi S (1983) Wound healing in the cornea of the chick embryo. V. An observation and quantitative isolated corneal epithelium during spreading in vitro. Cell Tissue Res 229: 109–127

    Article  PubMed  CAS  Google Scholar 

  • Tanabe A, Kobayashi Y, Usui T (1983) Enhancement of human neutrophil oxygen consumption by chemotactic factors. Experientia 39: 604–606

    Article  PubMed  CAS  Google Scholar 

  • Tassava RA, Olsen CL (1982) Higher vertebrates do not regenerate digits and legs because the wound epidermis is not functional. A hypothesis. Differentiation 22: 151–155

    Google Scholar 

  • Tassava RA, Treece DP, Olsen CL (1983) Effects of partial denervation on the newt blasterna cell cycle. Limb development and regeneration part. Liss; New York, pp 537–545

    Google Scholar 

  • Taylor DL, Fechheimer M (1981) Cytoplasmic structure and contractility: the solation—contraction coupling hypothesis. Philos Trans R Soc Lond [Biol] 299: 185–197

    Article  Google Scholar 

  • Thévenet A (1981) Wound healing of the integument in the 5-day chick embryo. Arch Microsc Morphol Exp 70: 227–244

    Google Scholar 

  • Thévenet A (1983) Cicatrisation de la peau d’embryon de poulet de 7 jours cultivee in vitro. Arch Microsc Morphol Exp 72: 23–46

    Google Scholar 

  • Tillmann U, Bereiter-Hahn J (1985) Actin fibrillar system and energy-metabolism. Abstr Eur J Cell Biol [Suppl 7] 36: 66

    Google Scholar 

  • Trinkaus JP (1976) On the mechanism of metazon cell movements. In: Poste G, Nicolson GL (eds) The cell surface in animal embryogenesis and development. North-Holland, Amsterdam, pp 225–311

    Google Scholar 

  • Trinkaus JP (1980) Formation of protrusion of the cell surface during tissue cell movement. In: Tumor cell surfaces and malignancy. Liss, New York, pp 887–906

    Google Scholar 

  • Trinkaus JP (1984) Cells into organs. Prentice-Hall, Englewood Cliffs, 2nd ed, pp 543

    Google Scholar 

  • Trinkaus JP, Erickson CA (1983) Protrusive activity, mode and rate of locomotion, and pattern of adhesion of Fundulus deep cells during gastrulation. J Exp Zool 228: 41–70

    Article  Google Scholar 

  • Turnbull RS, Stross EE (1983) The healing of hamster oral mucosal wounds covered by porcine grafts. A histological study. J Periodontol 1: 746–752

    Google Scholar 

  • Udoh P, Derby A (1982) The effect of the substrate on tadpole epidermal cells in vitro. J Exp Zool 219: 75–80

    Article  Google Scholar 

  • Vasiliev JM (1982) Spreading and locomotion of tissue cells: factors controlling the distribution of pseudopodia. Philos Trans R Soc Lond [Biol] 299: 159–167

    Article  CAS  Google Scholar 

  • Vaughan RB, Trinkaus JP (1966) Movements of epithelial sheets in vitro. J Cell Sci 1: 407413

    Google Scholar 

  • Viziam CB, Matoltsy AG, Mescon H (1964) Epithelialization of small wounds. J Invest Dermatol 43: 499–567

    PubMed  CAS  Google Scholar 

  • Warfel KA, Hull MT (1984) Migration of lymphocytes through the cutaneous basal lamina in normal skin: An ultrastructural study. Anat Rec 208: 349–355

    Google Scholar 

  • Weiss P (1950) Perspectives in the field of morphogenesis. Q Rev Biol 25:177–198 Weiss P (1958) Cell contact. Int Rev Cytol 7: 391–423

    Google Scholar 

  • Weiss P (1961) The biological foundations of wound repair. Harvey Lect Ser 55: 13–42

    CAS  Google Scholar 

  • Weiss P, Matoltsy AG (1957) Absence of wound healing in young chick embryos. Nature 26: 854

    Article  Google Scholar 

  • Williams JP (1972) Interrelation of epithelial glycogen, cell proliferation and cellular migration while cyclic adenosine monophosphate in epithelial wound healing. Cell Differ 1: 317–323

    Article  PubMed  CAS  Google Scholar 

  • Winstanley EW (1976) Changes in the width of epithelial cells in the healing excised cutaneous wound. Res Vet Sci 20: 306–310

    PubMed  CAS  Google Scholar 

  • Winter DG (1964) Movement of epidermal cells over the wound surface. Adv Biol Skin 5: 113–127

    Google Scholar 

  • Winter DG (1973) Epidermal regeneration studied in the domestic pig. In: Maibach HI, Rovee DT (eds) Epidermal wound healing. Year Book Med Publ Inc, Chicago, pp 71–112

    Google Scholar 

  • Wong MK, Gotlieb AI (1984) In vitro reendothelialization of a single-cell wound. Role of microfilaments bundles in rapid lamellipodia-mediated wound closure. Lab Invest 51: 75–81

    Google Scholar 

  • Yamanaka H, Eguchi G (1981) Regeneration of the cornea in adult newts: overall process and behavior of epithelial cells. Differentiation 19: 84–92

    Article  Google Scholar 

  • Deitch EA, Dobke M, Baxter CR (1985) Failure of local immunity. Arch Surg 120:78–84

    Google Scholar 

  • Dunn MG, Silver FH, Swann DA (1985) Mechanical analysis of hypertrophic scar tissue: Structural basis for apparent increased rigidity. J Invest Dermat 84:9–13

    Google Scholar 

  • Grinnell F (1984) Fibronectin and wound healing. J Cell Biochem 26:107–116

    Google Scholar 

  • Rollman-Dinsmore C, Bryant SV (1984) The distribution of marked dermal cells from small localized implants in limb regenerates. Develop Biol 106:275–281

    Google Scholar 

  • Lundberg C, Lebel L, Gerdin B (1984) The inflammatory reaction in healing wounds: the role of polymorphonuclear leucocytes. Int J Tissue Res VI: 477–483

    Google Scholar 

  • Schilling JA (1985) Advances in knowledge related to wounding, repair, and healing: 1885–1984. Annals of Surg 201:268–277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bereiter-Hahn, J. (1986). Epidermal Cell Migration and Wound Repair. In: Bereiter-Hahn, J., Matoltsy, A.G., Richards, K.S. (eds) Biology of the Integument. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00989-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00989-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-00991-8

  • Online ISBN: 978-3-662-00989-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics