Skip to main content

Vergleichende Analyse der Word-Embedding-Verfahren Word2Vec und GloVe am Beispiel von Kundenbewertungen eines Online-Versandhändlers

  • Chapter
  • First Online:
Künstliche Intelligenz in Wirtschaft & Gesellschaft

Part of the book series: FOM-Edition ((FOMEDITION))

Zusammenfassung

Um eine zielgerichtete Aussage zu Inhalten in Texten zu liefern, werden Bedeutungen von Wörtern als Vektoren dargestellt. Zur Vektorisierung, welche auch als „Word-Embedding-Verfahren“ bezeichnet werden, sind bereits existierende Verfahren zu überprüfen, denn die Wahl des Lernalgorithmus hat einen großen Einfluss auf die Genauigkeit des Gesamtanalyseergebnisses bei einer bestimmten Kategorie von Texten. Es wird beschrieben, wie die beiden populären Verfahren „Word2Vec“ und „GloVe“ für die Analyse von Online-Bewertungen konzipiert, implementiert und angewendet werden können. Eine quantitative Evaluation der Ergebnisse erfolgt auf Basis von Rezessionen des Versandhändlers Amazon.com. In einer abschließenden Diskussion sollen die Testergebnisse validiert und die Grenzen aufgezeigt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Aghahadi, Z., & Talebpour, A. (2018). Word embedding in small Corpora: A case study in Quran. In 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE). IEEE, S. 303–307.

    Google Scholar 

  • Al-Amin, M., Islam, M. S., & Das Uzzal, S. (2017). Sentiment analysis of Bengali comments with Word2Vec and sentiment information of words. In 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE, S. 186–190.

    Google Scholar 

  • Alshahrani, H., Alzahrani, A., Alshehri, A., et al. (2017). Evaluation of gradient descent optimization: Using android applications in neural networks. In 2017 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, S. 1471–1476.

    Google Scholar 

  • Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. In Proceedings of the 52nd annual meeting of the association for computational linguistics. Association for computational linguistics, S. 238–247.

    Google Scholar 

  • Berardi, G., Esuli, A., & Marcheggiani, D. (2015). Word embeddings go to Italy: A comparison of models and training datasets. In Italian Information Retrieval Workshop, S. 1–8.

    Google Scholar 

  • Bernier-Colborne, G., & Drouin, P. (2016). Evaluation of distributional semantic models: A holistic approach. In Proceedings of the 5th international workshop on computational technology. Association for computational linguistics, S. 52–61.

    Google Scholar 

  • Bhoir, S., Ghorpade, T., & Mane, V. (2017). Comparative analysis of different word embedding models. In 2017 International Conference on Advances in Computing, Communication and Control (ICAC3). IEEE, S. 1–4.

    Google Scholar 

  • Bruni, E., Uijlings, J., Baroni, M., & Sebe, N. (2012). Distributional semantics with eyes. In Proceedings of the 20th ACM international conference on Multimedia – MM ’12. ACM Press, New York, New York, USA, S. 1219.

    Google Scholar 

  • Buchkremer, R., Demund, A., Ebener, S., et al. (2019). The application of artificial intelligence technologies as a substitute for reading and to support and enhance the authoring of scientific review articles. XX. https://doi.org/10.1109/access.2019.2917719.

  • Chaitanya, I., Madapakula, I., Gupta, S. K., & Thara, S. (2018). Word level language identification in code-mixed data using word embedding methods for Indian languages. In 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, S. 1137–1141.

    Google Scholar 

  • Chang, C.-Y., Lee, S.-J., & Lai, C.-C. (2017). Weighted word2vec based on the distance of words. In 2017 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, S. 563–568.

    Google Scholar 

  • Chilimbi, T., Suzue, Y., Apacible, J., & Kalyanaraman, K. (2014). Project Adam: Building an efficient and scalable deep learning training system. In Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation. USENIX Association, Broomfield, S. 571–582.

    Google Scholar 

  • Chiu, B., Crichton, G., Korhonen, A., & Pyysalo, S. (2016). How to train good word embeddings for biomedical NLP. In Proceedings of the 15th workshop on biomedical natural language processing. Association for computational linguistics, S. 166–174.

    Google Scholar 

  • Chowdhury, H. A., Imon, M. A. H., & Islam, M. S. (2018). A comparative analysis of word embedding representations in authorship attribution of Bengali literature. In 2018 21st International Conference of Computer and Information Technology (ICCIT). IEEE, S. 1–6.

    Google Scholar 

  • Dekhtyar, A., & Fong, V. (2017). RE data challenge: Requirements identification with Word2Vec and TensorFlow. In 2017 IEEE 25th international Requirements Engineering conference (RE). IEEE, S. 484–489.

    Google Scholar 

  • Dodal, S. S., & Kulkarni, P. V. (2018). Multi-lingual information retrieval using deep learning. In 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE, S. 1–6.

    Google Scholar 

  • Du, X., Zheng, Z., Xiao, G., & Yin, B. (2017). The automatic classification of fault trigger based bug report. In 2017 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE, S. 259–265.

    Google Scholar 

  • Fahad, S. A., & Yahya, A. E. (2018). Inflectional review of deep learning on natural language processing. In 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE). IEEE, S. 1–4.

    Google Scholar 

  • Ge, L., & Moh, T.-S. (2017). Improving text classification with word embedding. In 2017 IEEE international conference on big data (Big Data). IEEE, S. 1796–1805.

    Google Scholar 

  • Goldberg, Y. (2016). A primer on neural network models for natural language processing. Journal of Artificial Intelligence Research, 57, 345–420.

    Article  Google Scholar 

  • Grawe, M. F., Martins, C. A., & Bonfante, A. G. (2017). Automated patent classification using word embedding. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, S. 408–411.

    Google Scholar 

  • Gupta, A., & Tripathy, B. K. (2017). Implementing GloVe for context based k-means++ clustering. In 2017 International Conference on Intelligent Sustainable Systems (ICISS). IEEE, S. 1041–1046.

    Google Scholar 

  • Hellrich, J., & Hahn, U. (2016). Bad company-neighborhoods in neural embedding spaces considered harmful. In Proceedings of COLING 2016, the 26th international conference on computational linguistics. association for computational linguistics, S. 2785–2796.

    Google Scholar 

  • Huffman, D. (1952). A method for the construction of minimum-redundancy codes. Proceedings of IRE, 40, 1098–1101. https://doi.org/10.1109/JRPROC.1952.273898.

    Article  Google Scholar 

  • Islam, M. S., Amin, M. A., & Das Uzzal, S. (2016). Word embedding with hellinger PCA to detect the sentiment of bengali text. In 2016 19th International Conference on Computer and Information Technology (ICCIT). IEEE, S. 363–366.

    Google Scholar 

  • Jettakul, A., Thamjarat, C., Liaowongphuthorn, K., et al. (2018). A comparative study on various deep learning techniques for Thai NLP lexical and syntactic tasks on noisy data. In 2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE). IEEE, S. 1–6.

    Google Scholar 

  • Jin, X., Zhang, S., & Liu, J. (2018). Word semantic similarity calculation based on Word2vec. In 2018 International Conference on Control, Automation and Information Sciences (ICCAIS). IEEE, S. 12–16.

    Google Scholar 

  • Katic, T., & Milicevic, N. (2018). Comparing sentiment analysis and document representation methods of amazon reviews. In 2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY). IEEE, S. 283–286.

    Google Scholar 

  • Lai, S., Liu, K., He, S., & Zhao, J. (2016). How to generate a good word embedding. IEEE Intelligent Systems, 31, 5–14. https://doi.org/10.1109/MIS.2016.45.

    Article  Google Scholar 

  • Lauren, P., Qu, G., Huang, G.-B., et al. (2017). A low-dimensional vector representation for words using an extreme learning machine. In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, S. 1817–1822.

    Google Scholar 

  • Levy, O., & Goldberg, Y. (2014). Dependency-based word embeddings. In Proceedings ofthe 52nd annual meeting ofthe association for computational linguistics (Short papers), S. 302–308.

    Google Scholar 

  • Li, S., Chua, T.-S., Zhu, J., & Miao, C. (2016). Generative topic embedding: A continuous representation of documents. In Proceedings of the 54th annual meeting of the association for computational linguistics. Association for computational linguistics, S. 666–675.

    Google Scholar 

  • Lilleberg, J., Zhu, Y., & Zhang, Y. (2015). Support vector machines and Word2vec for text classification with semantic features. In 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC). IEEE, S. 136–140.

    Google Scholar 

  • Ling, Y., An, Y., Liu, M., et al. (2017). Integrating extra knowledge into word embedding models for biomedical NLP tasks. In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, S. 968–975.

    Google Scholar 

  • Manna, S., & Nakai, H. (2019). Effectiveness of word embeddings on classifiers: A case study with tweets. In 2019 IEEE 13th International Conference on Semantic Computing (ICSC). IEEE, S. 158–161.

    Google Scholar 

  • Manning, C. D., Surdeanu, M., Bauer, J., et al. (2014). The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd annual meeting of the association for computational linguistics: System demonstrations, S. 55–60.

    Google Scholar 

  • Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word representations in vector space. In Proceedings of ICLR Workshop, S. 1–11.

    Google Scholar 

  • Mikolov, T., Sutskever, I., Chen, K., et al. (2013b). Distributed representations of words and phrases and their com.positionality. Advances in Neural Information Processing Systems, 3111–3119.

    Google Scholar 

  • Mikolov, T., Yih, W.-T., & Zweig, G. (2013c). Linguistic regularities in continuous space word representations. In Proceedings of NAACL-HLT. Association for computational linguistics, Atlanta, Georgia, S. 746–751.

    Google Scholar 

  • Mitchell, J., & Lapata, M. (2010). Composition in distributional models of semantics. Cognitive Science, 34, 1388–1429. https://doi.org/10.1111/j.1551-6709.2010.01106.x.

    Article  Google Scholar 

  • Mori, Y., & Satoh, S. (2018). Co-cleansing of image and text dataset by automatic image annotation and proper noun analysis. In 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE). IEEE, S. 485–487.

    Google Scholar 

  • Morin, F., & Bengio, Y. (2005). Hierarchical probabilistic neural network language model. In Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics. AISTATS, S. 246–252.

    Google Scholar 

  • O’Mahony, M. P., Cunningham, P., & Smyth, B. (2010). An assessment of machine learning techniques for review recommendation. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), S. 241–250.

    Google Scholar 

  • Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word representation. In EMNLP 2014 – 2014 Conference on empirical methods in natural language processing, proceedings of the conference.

    Google Scholar 

  • Putra, Y. A., & Khodra, M. L. (2016). Deep learning and distributional semantic model for Indonesian tweet categorization. In 2016 International Conference on Data and Software Engineering (ICoDSE). IEEE, S. 1–6.

    Google Scholar 

  • Rodriguez, D. V., Carver, D. L., & Mahmoud, A. (2018). An efficient wikipedia-based approach for better understanding of natural language text related to user requirements. In 2018 IEEE Aerospace Conference. IEEE, S. 1–16.

    Google Scholar 

  • Sahlgren, M. (2008). The distributional hypothesis. Italian Journal of Linguistics, 20, 33–54.

    Google Scholar 

  • Savigny, J., & Purwarianti, A. (2017). Emotion classification on youtube comments using word embedding. In 2017 International Conference on Advanced Informatics, Concepts, Theory, and Applications (ICAICTA). IEEE, S. 1–5.

    Google Scholar 

  • Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34, 1–47. https://doi.org/10.1145/505282.505283.

    Article  Google Scholar 

  • Semberecki, P., & Maciejewski, H. (2017). Deep learning methods for subject text classification of articles. In 2017 Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE, S. 357–360.

    Google Scholar 

  • Sharma, Y., Agrawal, G., Jain, P., & Kumar, T. (2017). Vector representation of words for sentiment analysis using GloVe. In 2017 International Conference on Intelligent Communication and Computational Techniques (ICCT). IEEE, S. 279–284.

    Google Scholar 

  • Sharma, R., Bhattacharyya, P., Dandapat, S., & Bhatt, H. S. (2018). Identifying transferable information across domains for cross-domain sentiment classification. In Proceedings of the 56th annual meeting of the association for computational linguistics. association for computational linguistics, S. 968–978.

    Google Scholar 

  • Shen, C.-H., Sung, J. Y., & Lee, H.-Y. (2018a). Language transfer of audio Word2Vec: Learning audio segment representations without target language data. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, S. 2231–2235.

    Google Scholar 

  • Shen, C.-H., Sung, J. Y., & Lee, H.-Y. (2018b). Language transfer of audio Word2Vec: Learning audio segment representations without target language data. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, S. 2231–2235.

    Google Scholar 

  • Solangi, Y. A., Solangi, Z. A., Aarain, S., et al. (2018). Review on Natural Language Processing (NLP) and its toolkits for opinion mining and sentiment analysis. In 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS). IEEE, S. 1–4.

    Google Scholar 

  • Sravani, L., Reddy, A. S., & Thara, S. (2018). A comparison study of word embedding for detecting named entities of code-mixed data in Indian language. In 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, S. 2375–2381.

    Google Scholar 

  • Statista. (2019). User-generated internet content per minute 2018 | Statistic. https://www.statista.com/statistics/195140/new-user-generated-content-uploaded-by-users-per-minute/. Zugegriffen: 5 Sept 2019.

  • Stratos, K., Collins, M., & Hsu, D. (2015). Model-based word embeddings from decompositions of count matrices. In Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing. Association for computational linguistics, S. 1282–1291.

    Google Scholar 

  • Sukanya, M., & Biruntha, S. (2012). Techniques on text mining. In 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT). IEEE, S. 269–271.

    Google Scholar 

  • Sumit, S. H., Hossan, M. Z., Al Muntasir, T., & Sourov, T. (2018). Exploring word embedding for Bangla sentiment analysis. In 2018 International Conference on Bangla Speech and Language Processing (ICBSLP). IEEE, S. 1–5.

    Google Scholar 

  • Taqi, A. M., Awad, A., Al-Azzo, F., & Milanova, M. (2018). The impact of multi-optimizers and data augmentation on TensorFlow convolutional neural network performance. In 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE, S. 140–145.

    Google Scholar 

  • TH, M., Sahu, S. K., & Anand, A. (2015). Evaluating distributed word representations for capturing semantics of biomedical concepts. In Proceedings of the 2015 Workshop on Biomedical Natural Language Processing (BioNLP 2015). Association for Computer Linguistics, S. 158–163.

    Google Scholar 

  • Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics, 5, 99–114.

    Article  Google Scholar 

  • Urata, T., & Maeda, A. (2017). An entity disambiguation approach based on Wikipedia for entity linking in microblogs. In 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI). IEEE, S. 334–338.

    Google Scholar 

  • Van Tuan, D., & Sato, H. (2017). Improving distributed representation by feature selection of Wikipedia. In 2017 Fourth Asian Conference on Defence Technology – Japan (ACDT). IEEE, S. 1–6.

    Google Scholar 

  • Wang, Y., & Berwick, R. C. (2012). On formal models for cognitive linguistics. In 2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing. IEEE, S. 7–17.

    Google Scholar 

  • Wang, Z., Zhang, J., Feng, J., & Chen, Z. (2014). Knowledge graph and text jointly embedding. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for computer linguistics, Doha, Qatar, S. 1591–1601.

    Google Scholar 

  • Wikimedia Foundation. (2018). Wikimedia statistics – English Wikipedia – Pages to date. https://stats.wikimedia.org/v2/#/en.wikipedia.org/content/pages-to-date/normal%7Cline%7CAll%7C~total. Zugegriffen: 19 Jan. 2019.

  • Wint, Z. Z., Manabe, Y., & Aritsugi, M. (2018). Deep learning based sentiment classification in social network services datasets. In 2018 IEEE International Conference on Big Data, Cloud Computing, Data Science & Engineering (BCD). IEEE, S. 91–96.

    Google Scholar 

  • Yi, X., Zheng, R., Wang, A., et al. (2017). Design and implementation of Word2Vec parallel algorithm based on HPC. In 2017 Chinese Automation Congress (CAC). IEEE, S. 585–590.

    Google Scholar 

  • Yu, L.-C., Wang, J., Lai, K. R., & Zhang, X. (2018). Refining word embeddings using intensity scores for sentiment analysis. IEEE/ACM Transactions Audio, Speech and Language Processing, 26, 671–681. https://doi.org/10.1109/TASLP.2017.2788182.

    Article  Google Scholar 

  • Yuan, C., Wu, J., Li, H., & Wang, L. (2018). Personality recognition based on user generated content. In 2018 15th International Conference on Service Systems and Service Management (ICSSSM). IEEE, S. 1–6.

    Google Scholar 

  • Zhang, C., Wang, X., Yu, S., & Wang, Y. (2018). Research on keyword extraction of Word2vec model in Chinese corpus. In 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS). IEEE, S. 339–343.

    Google Scholar 

  • Zhang, X., Lin, P., Chen, S., et al. (2016). Valence-arousal prediction of Chinese Words with multi-layer corpora. In 2016 International Conference on Asian Language Processing (IALP). IEEE, S. 304–307.

    Google Scholar 

  • Zhang, X., & Yu, Q. (2017). Hotel reviews sentiment analysis based on word vector clustering. In 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA). IEEE, S. 260–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Buchkremer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Horn, N., Erhardt, M.S., Di Stefano, M., Bosten, F., Buchkremer, R. (2020). Vergleichende Analyse der Word-Embedding-Verfahren Word2Vec und GloVe am Beispiel von Kundenbewertungen eines Online-Versandhändlers. In: Buchkremer, R., Heupel, T., Koch, O. (eds) Künstliche Intelligenz in Wirtschaft & Gesellschaft. FOM-Edition. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-29550-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-29550-9_29

  • Published:

  • Publisher Name: Springer Gabler, Wiesbaden

  • Print ISBN: 978-3-658-29549-3

  • Online ISBN: 978-3-658-29550-9

  • eBook Packages: Business and Economics (German Language)

Publish with us

Policies and ethics