Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 206))

Abstract

Poliovirus is the causative agent of the acute central nervous system disease known as poliomyelitis. Towards the end of the nineteenth century, epidemics of poliomyelitis began to occur in the United States and in Europe, much to the surprise of the medical community, which had previously viewed the disease as a rarity, seen largely as sporadic cases in infants. Poliovirus was first isolated in 1908 by inoculation of monkeys with a cell-free extract made from the spinal cord of a fatal case of poliomyelitis (Landsteiner and Popper 1908). For the next 40 years, research on the virus provided the necessary information on antigenic types, pathogenesis and immunity required to formulate vaccines that could prevent infection. As a result of this work, two excellent vaccines were developed which have effectively controlled poliomyelitis in much of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahearn J, Hayward S, Hickey J, Fearon D (1988) Epstein-Barr virus (EBV) infection of murine L cells expressing recombinant human EBV/C3d receptor. Proc Natl Acad Sci USA 85: 9307–9311

    Article  PubMed  CAS  Google Scholar 

  • Armstrong C (1939) Successful transfer of the Lansing strain of poliomyelitis virus from the cotton rat to the white mouse. Public Health Rep 54: 2302–2305

    Article  Google Scholar 

  • Assaad F, Cockbum WC (1982) The relation between acute persisting spinal paralysis and poliomyelitis vaccine-results of a ten-year enquiry. Bull World Health Organ 60: 231–242

    Google Scholar 

  • Bass DM, Trier JS, Dambrauskas R, Wolf JL (1988) Reovirus type 1 infection of small intestinal epithelium in suckling mice and its effects on M cells. Lab Invest 58: 226–235

    PubMed  CAS  Google Scholar 

  • Blinzinger K, Anzil AP (1974) Neural route of infection in viral disease of the central nervous system. Lancet ii: 1374–1375

    Google Scholar 

  • Blinzinger K, Simon J, Magrath D, Boulger L (1969) Poliovirus crystals within the endoplasmic reticulum of endothelial and mononuclear cells in the monkey spinal cord. Science 163: 1336–1337

    Article  PubMed  CAS  Google Scholar 

  • Bodian D (1954a) Viremia in experimental poliomyelitis. 1. General aspects of infection after intramuscular inoculation with strains of high and of lowinvasiveness. Am J Hyg 60: 339–357

    PubMed  CAS  Google Scholar 

  • Bodian D (1954b) Viremia in experimental poliomyelitis. 2. Viremia and the mechanism of the “provoking” effect of injections or trauma. Am J Hyg 60: 359–370

    Google Scholar 

  • Bodian D (1955) Emerging concept of poliomyelitis infection. Science 12: 105–108

    Article  Google Scholar 

  • Bodian D (1959) Poliomyelitis: pathogenesis and histopathology. In: Rivers TM, Horsfall FL (eds) Viral and rickettsial infections of man. Lippincott, Philadelphia, pp 479–498

    Google Scholar 

  • Bodian D, Horstmann DH (1965) Polioviruses. In: Horsfall FL, Tamm I (eds) Viral and rickettsial infections of man. Lippincott, Philadelphia, pp 430–473

    Google Scholar 

  • Bouchard M, Racaniello VR (1995) Determinants of attenuation and temperature sensitivity in the type 1 poliovirus vaccine strain. J Virol 69: 4972–4978

    PubMed  CAS  Google Scholar 

  • Brown RH, Johnson D, Ogonowski M, Weiner HL (1987) Type 1 human poliovirus binds to human synaptosomes. Ann Neurol 21: 64–70

    Article  PubMed  Google Scholar 

  • Cann AJ, Stanway G, Hughes PJ, Minor PD, Evans DMA, Schild GC, Almond JW (1984) Reversion to neurovirulence of the live-attenuated Sabin type 3 oral poliovirus vaccine. Nucleic Acids Res 12: 7787–7792

    Article  PubMed  CAS  Google Scholar 

  • Christodoulou C, Colbere-Garapin F, Macadam A, Taffs LF, Marsden S, Minor P, Horaud F (1990) Mapping of mutations associated with neurovirulence in monkeys infected with Sabin 1 poliovirus revertants selected at high temperature. J Virol 64: 4922–4929

    PubMed  CAS  Google Scholar 

  • Colston E, Racaniello VR (1995) Poliovirus variants selected on mutant receptor-expressing cells identify capsid residues that expand receptor recognition. J Virol 69: 4823–4829

    PubMed  CAS  Google Scholar 

  • Couderc T, Barzu T, Horaud F, Crainic R (1990) Poliovirus permissivity and specific receptor expression on human endothelial cells. Virology 174: 95–102

    Article  PubMed  CAS  Google Scholar 

  • Couderc T, Hogle J, Le Blay H, Horaud F, Blondel B (1993) Molecular characterization of mouse-virulent poliovirus type 1 Mahoney mutants: Involvement of residues of polypeptides VP1 and VP2 located on the inner surface of the capsid protein shell. J Virol 67: 3808–3817

    PubMed  CAS  Google Scholar 

  • Couderc T, Guédo N, Calvez V, Pelletier I, Hogle J, Colbére-Garapin F, Blonde! B (1994) Substitutions in the capsids of poliovirus mutants selected in human neuroblastoma cells confer on the Mahoney type 1 strain a neurovirulent phenotype in mice. J Virol 68: 8386–8391

    PubMed  CAS  Google Scholar 

  • Enders JF, Weiler TH, Robbins FC (1949) Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. Science 109: 85–87

    Article  PubMed  CAS  Google Scholar 

  • Evans DMA, Dunn G, Minor PD, Schild GC, Cann AJ, Stanway G, Almond JW, Currey K, Maizel JV (1985) Increased neurovirulence associated with a single nucleotide change in a noncoding region of the Sabin type 3 poliovaccine genome. Nature 314: 548–550

    Article  PubMed  CAS  Google Scholar 

  • Faber HK (1956) The evolution of poliomyelitic infection. Pediatrics 17: 278–286

    PubMed  CAS  Google Scholar 

  • Filman DJ, Syed R, Chow M, Macadam AJ, Minor PD, Hogle JM (1989) Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO J 8: 1567–1579

    PubMed  CAS  Google Scholar 

  • Flamand A, Gagner J-P, Morrison LA, Fields BN (1991) Penetration of the nervous system of suckling mice by mammalian reoviruses. J Virol 65: 123–131

    PubMed  CAS  Google Scholar 

  • Freistadt MF, Kaplan G, Racaniello VR (1990) Heterogeneous expression of poliovirus receptor-related proteins in human cells and tissues. Mol Cell Biol 10: 5700–5706

    PubMed  CAS  Google Scholar 

  • Gotoh B, Ogasawara T, Toyoda T, Inocencio NM, Hamaguchi M, Nagai Y (1990) An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo. EMBO J 9: 4189–4195

    PubMed  CAS  Google Scholar 

  • Hashimoto I, Hagiwara A, Komatsu T (1984) Ultrastructural studies on the pathogenesis of poliomyelitis in monkeys infected with poliovirus. Acta Neuropathol (Berl) 64: 53–60

    Article  CAS  Google Scholar 

  • Holland JJ (1961) Receptor affinities as major determinants of enterovirus tissue tropisms in humans. Virology 15: 312–326

    Article  PubMed  CAS  Google Scholar 

  • Holland JJ, Hoyer BH (1962) Early stages of enterovirus infection. Cold Spring Harb Symp Quant Biol 27: 101–111

    PubMed  CAS  Google Scholar 

  • Holland JJ, McLaren LC (1959) The mammalian cell-virus relationship II. Adsorption, reception, and eclipse by HeLa cells. J Exp Med 109: 487–504

    Article  PubMed  CAS  Google Scholar 

  • Holland JJ, McLaren LC (1961) The location and nature of enterovirus receptors in susceptible cells. J Exp Med 114: 161–171

    Article  PubMed  CAS  Google Scholar 

  • Holland JJ, Mclaren JC, Syverton JT (1959a) The mammalian cell virus relationship III. Production of infectious poliovirus by non-primate cells exposed to poliovirus ribonucleic acid. Proc Soc Exp Biol Med 100: 843–845

    PubMed  CAS  Google Scholar 

  • Holland JJ, McLaren JC, Syverton JT (1959b) The mammalian cell virus relationship IV. Infection of naturally insusceptible cells with enterovirus ribonucleic acid. J Exp Med 110: 65–80

    Article  PubMed  CAS  Google Scholar 

  • Horie H, Koike S, Kurata T, Sato-Yoshida Y, Ise I, Ota Y, Abe S, Hioki K, Kato H, Taya C, Nomura T, Hashizume S, Yonekawa H, Nomoto A (1994) Transgenic mice carrying the human poliovirus receptor: new animal model for study of poliovirus neurovirulence. J Virol 68: 681–688

    PubMed  CAS  Google Scholar 

  • Horstmann DM (1952) Poliomyelitis virus in blood of orally infected monkeys and chimpanzees. Proc Soc Exp Biol Med79: 417

    PubMed  CAS  Google Scholar 

  • Horstmann DM, McCollum RW, Mascola AD (1954) Viremia in human poliomyelitis. J Exp Med 99: 355–369

    Article  PubMed  CAS  Google Scholar 

  • Hurst EW (1929) The histology of experimental poliomyelitis. J Pathol 32: 457–477

    Article  Google Scholar 

  • Hurst EW (1936) The newer knowledge of virus diseases of the nervous system: a review and an interpretation. Brain 59: 1–34

    Article  Google Scholar 

  • Jubelt B, Gallez-Hawkins B, Narayan O, Johnson RT (1980a) Pathogenesis of human poliovirus infection in mice. I Clinical and pathological studies. J Neuropathol Exp Neurol 39: 138–148

    Article  PubMed  CAS  Google Scholar 

  • Jubelt B, Narayan O, Johnson RT (1980b) Pathogenesis of human poliovirus infection in mice. II. Age-dependency of paralysis. J Neuropathol Exp Neurol 39: 149–158

    Article  PubMed  CAS  Google Scholar 

  • Kanamitsu M, Kasamaki A, Ogawa M, Kasahara S, Imumura M (1967) Immunofluorescent study on the pathogenesis of oral infection of poliovirus in monkey. Jpn J Med Sci Biol 20: 175–191

    PubMed  CAS  Google Scholar 

  • Kaplan AS (1955) Comparison of susceptible and resistant cells to infection with poliomyelitis virus. Ann NY Acad Sci 61: 830–839

    Article  PubMed  CAS  Google Scholar 

  • Kaplan G, Freistadt MS, Racaniello VR (1990) Neutralization of poliovirus by cell receptors expressed in insect cells. J Virol 64: 4697–4702

    PubMed  CAS  Google Scholar 

  • Kawamura N, Kohara M, Abe S, Komatsu T, Tago K, Arita M, Nomoto A (1989) Determinants in the 5′ noncoding region of poliovirus Sabin 1 RNA that influence the attenuation phenotype. J Virol 63: 1302–1309

    PubMed  CAS  Google Scholar 

  • Koike S, Horie H, Dise I, Okitsu H, Yoshida M, lizuka N, Takeuthi K, Takegami T, Nomoto A (1990) The poliovirus receptor protein is produced both as membrane-bound and secreted forms. EM BO J 9: 3217–3224

    CAS  Google Scholar 

  • Koike S, Taya C, Kurata T, Abe S, Ise I, Yonekawa H, Nomoto A (1991) Transgenic mice susceptible to poliovirus. Proc Natl Acad Sci USA 88: 951–955

    Article  PubMed  CAS  Google Scholar 

  • Koike S, Horie H, Sato Y, Ise I, Taya C, Nomura T, Yoshioka I, Yonekawa H, Nomoto A (1993) Poliovirus-sensitive transgenic mice as a new animal model. Dev Biol Stand 78: 101–107

    PubMed  CAS  Google Scholar 

  • Kunin CM, Jordan WS (1961) In vitro adsorption of poliovirus by noncultured tissues. Effect of species, age and malignancy.Am J Hyg 73: 245–257

    PubMed  CAS  Google Scholar 

  • La Monica N, Meriam C, Racaniello VR (1986) Mapping of sequences required for mouse neuro-virulence of poliovirus type 2 Lansing. J Virol 57: 515–525

    PubMed  Google Scholar 

  • La Monica N, Almond JW, Racaniello VR (1987) A mouse model for poliovirus neurovirulence identifies mutations that attenuate the virus for humans. J Virol 61: 2917–2920

    PubMed  Google Scholar 

  • Landsteiner K, Popper E (1908) Mikroscopische präparate von einem menschlichen und zwei affentückermarker Wien Klin Wochenschr 21: 1930

    Google Scholar 

  • Levine B, Hardwick JM, Trapp BD, Crawford TO, Bollinger RC, Griffin DE (1991) Antibody-mediated clearance of alphavirus infection from neurons. Science 254: 856–859

    Article  PubMed  CAS  Google Scholar 

  • Li CP, Schaeffer M (1953) Adaptation of type 1 poliomyelitis virus to mice. Proc Soc Exp Biol Med 82: 477–481

    PubMed  CAS  Google Scholar 

  • Lu H-H, Yang C-F, Murdin AD, Klein MH, Harber JJ, Kew OM, Wimmer E (1994) Mouse neurovirulence determinants of poliovirus type 1 strain LS-a map to the coding regions of capsid protein VP1 and proteinase 2Apro. J Virol 68: 7507–7515

    PubMed  CAS  Google Scholar 

  • Macadam AJ, Arnold C, Howlett J, John A, Marsden S, Taffs F, Reeve P, Hamada N, Wareham K, Almond J, Cammack N, Minor PD (1989) Reversion of the attenuated and temperature-sensitive phenotypes of the Sabin type 3 strain of poliovirus in vaccinées. Virology 172: 408–414

    Article  PubMed  CAS  Google Scholar 

  • Macadam AJ, Ferguson G, Arnold C, Minor PD (1991a) An assembly defect as a result of an attenuating mutation in the capsid proteins of poliovirus type 3 vaccine strain. J Virol 65: 5225–5231

    PubMed  CAS  Google Scholar 

  • Macadam AJ, Pollard SJ, Ferguson G, Dunn G, Skuce R, Almond JW, Minor PD (1991b) The 5′ noncoding region of the type 2 poliovirus vaccine strain contains determinants of attenuation and temperature sensitivity. Virology 181: 451–458

    Article  PubMed  CAS  Google Scholar 

  • Macadam AJ, Pollard SR, Ferguson G, Skuce R, Wood D, Almond JW, Minor PD (1993) Genetic basis of attenuation of the Sabin type 2 vaccine strain of poliovirus in primates. Virology 192: 18–26

    Article  PubMed  CAS  Google Scholar 

  • Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47: 333–348

    Article  PubMed  CAS  Google Scholar 

  • Martin A, Wychowski C, Couderc T, Crainic R, Hogle J, Girard M (1988) Engineering a poliovirus type 2 antigenic site on a type 1 capsid results in a chimaeric virus which is neurovirulent for mice. EMBO J 7: 2839–2847

    PubMed  CAS  Google Scholar 

  • Melnick JL (1985) Enteroviruses: polioviruses, coxsackieviruses, echoviruses and newer entero-viruses. In: Fields BN, Knipe DM, Chanock RM, Melnick JL, Roizman B, Shope RE, (eds) “Virology”. Raven, New York, pp 705–738

    Google Scholar 

  • Melnick JL (1990) Enteroviruses: polioviruses, coxsackieviruses, echoviruses and newer enteroviruses. In: Fields BN, Knipe DM, Chanock, Hirsch MS, Melnick JL, Monath TP, Roizman B (eds) “Virology”. Raven, New York, pp 549–605

    Google Scholar 

  • Mendelsohn C, Wimmer E, Racaniello VR (1989) Cellular receptor for poliovirus: molecular cloning, nucleotide sequence and expression of a new member of the immunoglobulin superfamily. Cell 56: 855–865

    Article  PubMed  CAS  Google Scholar 

  • Minor PD, Dunn G (1988) The effect of sequences in the 5’-noncoding region on the replication of polioviruses in the human gut. J Gen Virol 69: 1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Minor PD, Dunn G, Evans DMA, Magrath DL, John A, Howlett J, Phillips A, Westrop G, Wareham K, Almond JW, Hogle JM (1989) The temperature-sensitivity of the Sabin type 3 vaccine strain of poliovirus: Molecular and structural effects of a mutation in the capsid protein VP3. J Gen Virol 70: 1117–1123

    Article  PubMed  CAS  Google Scholar 

  • Minor PD, Macadam AJ, Stone DM, Almond JW (1993) Genetic basis of attenuation of the Sabin oral poliovirus vaccines. Biologicals 21: 357–364

    Article  PubMed  CAS  Google Scholar 

  • Morrison LA, Sidman RL, Fields BN (1991) Direct spread of reovirus from the intestinal lumen to the central nervous system through vagal autonomic nerve fibers. Proc Natl Acad Sci USA 88: 3852–3856

    Article  PubMed  CAS  Google Scholar 

  • Moss EG, Racaniello VR (1991) Host range determinants located on the interior of the poliovirus capsid. EMBO J 5: 1067–1074

    Google Scholar 

  • Murray MG, Bradley J, Yang XF, Wimmer E, Moss EG, Racaniello VR (1988) Poliovirus host range is determined a short amino acid sequence in neutralization antigenic site I. Science 241: 213–215

    Article  PubMed  CAS  Google Scholar 

  • Nathanson N, Bodian D (1961) Experimental poliomyelitis following intramuscular virus infection. 1. The effect of neural block on a neurotropic and a pantropic strain. Bull Johns Hopkins Hosp 108: 308–319

    CAS  Google Scholar 

  • Nathanson N, Langmuir A (1963) The Cutter incident: poliomyelitis following formaldehyde-inactivated poliovirus vaccination in the United States during the spring of 1955. III. Comparison of the clinical character of vaccinated and contact cases occurring after use of high rate lots of Cutter vaccine. Am J Hyg 78: 61–81

    Google Scholar 

  • Nkowane B, Wassilak S, Orenstein W, Bart K, Schonberger L, Hinman A, Kew O (1987) Vaccine-associated paralytic poliomyelitis United States: 1973 through 1984. JAMA 257: 1335–1340

    Article  PubMed  CAS  Google Scholar 

  • Omata T, Kohara M, Kuge S, Komatsu T, Abe S, Semler BL, Kameda A, Itoh H, Arita M, Wimmer E, Nomoto A (1986) Genetic analysis of the attenuation phenotype of poliovirus type 1. J Virol 58: 348–358

    PubMed  CAS  Google Scholar 

  • Palmiter RD (1986) Germ-line transformation of mice. Annu Rev Genet 20: 456–499

    Article  Google Scholar 

  • Pollard SR, Dunn G, Cammack N, Minor PD, Almond JW (1989) Nucleotide sequence of a neurovirulent variant of the type 2 oral poliovirus vaccine. J Virol 63: 4949–4951

    PubMed  CAS  Google Scholar 

  • Racaniello VR (1995) Early events in infection: receptor binding and cell entry. In: Rotbart HA (ed) “Human enterovirus infections”. American Society for Microbiology, Washington DC, pp 73–93

    Google Scholar 

  • Racaniello VR, Baltimore D (1981) Cloned poliovirus complementary DNA is infectious in mammalian cells. Science214: 916–919

    Article  PubMed  CAS  Google Scholar 

  • Ren R (1992) Development and characterization of a transgenic mouse model for poliomyelitis. Columbia University

    Google Scholar 

  • Ren R, Racaniello V (1992a) Human poliovirus receptor gene expression and poliovirus tissue tropism in transgenic mice. J Virol 66: 296–304

    PubMed  CAS  Google Scholar 

  • Ren R, Racaniello VR (1992b) Poliovirus spreads from muscle to the central nervous system by neural pathways. J Infect Dis 166: 635–654

    Article  Google Scholar 

  • Ren R, Costantini FC, Gorgacz EJ, Lee JJ, Racaniello VR (1990) Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell 63: 353–362

    Article  PubMed  CAS  Google Scholar 

  • Ren R, Moss EG, Racaniello VR (1991) Identification of two determinants that attenuate vaccine-related type 2 poliovirus. J Virol 65: 1377–1382

    PubMed  CAS  Google Scholar 

  • Sabin AB (1956) Pathogenesis of poliomyelitis: reappraisal in light of new data. Science 123: 1151–1157

    Article  PubMed  CAS  Google Scholar 

  • Sabin AB (1957) Properties of attenuated polioviruses and their behavior in human beings. In: Rivers TM (ed) “Cellular biology, nucleic acids and viruses”. New York Academy of Science, New York, pp 113–133

    Google Scholar 

  • Sabin AB, Boulger LR (1973) History of Sabin attenuated poliovirus oral live vaccine strains. J Biol Stand 1: 115–118

    Article  Google Scholar 

  • Sabin AB, Ward R (1941) The natural history of human poliomyelitis. I. Distribution of virus in nervous and non-nervous tissues. J Exp Med 73: 771–793

    Article  PubMed  CAS  Google Scholar 

  • Sabin AB, Hennessen WA, Winsser J (1954) Studies on variants of poliomyelitis virus: I. Experimental segregation and properties of avirulent variants of three immunologie types. J Exp med 9: 551–576

    Article  Google Scholar 

  • Sicinski P, Rowinski J, Warchol JB, Jarzabek Z, Gut W, Szczygiel B, Bielecki K, Koch G (1990) Poliovirus type 1 enters the human host through intestinal M cells. Gastroenterology 98: 56–58

    PubMed  CAS  Google Scholar 

  • Svitkin YV, Cammack N, Minor PD, Almond JW (1990) Translation deficiency of the Sabin type 3 poliovirus genome: Association with an attenuating mutation C472-U. Virology 175: 103–109

    Article  PubMed  CAS  Google Scholar 

  • Tardy-Panit M, Blondel B, Martin A, Tekaia F, Horaud F, Delpeyroux F (1993) A mutation in the RNA polymerase of poliovirus type 1 contributes to attenuation in mice. J Virol 67: 4630–4638

    PubMed  CAS  Google Scholar 

  • Tatem JM, Weeks-Levy C, Georgiu A, DiMichele SJ, Gorgacz EJ, Racaniello VR, Cano FR (1992) A mutation present in the amino terminus of Sabin 3 poliovirus VP1 protein is attenuating. J Virol 66: 3194–3197

    PubMed  CAS  Google Scholar 

  • Theiler M (1941) Studies on poliomyelitis. Medicine 20: 443–462

    Article  Google Scholar 

  • Tyler KL, McPhee DA, Fields BN (1986) Distinct pathways of viral spread in the host determined by reovirus S1 gene segment. Science 233: 770–774

    Article  PubMed  CAS  Google Scholar 

  • Tyler KL, Virgin IVth HW, Bassel-Duby R, Fields BN (1989) Antibody inhibits defined stages in the pathogenesis of reovirus serotype 3 infection of the central nervous system. J Exp Med 170: 887–900

    Article  PubMed  CAS  Google Scholar 

  • Ward NA, Milstein JB, Hull HF, Hull BP, Kim-Farley RJ (1993) The WHO-EPI initiative for the global eradication of poliomyelitis. Biologicals 21: 327–333

    Article  PubMed  CAS  Google Scholar 

  • Webster RG, Rott R (1987) Influenza virus pathogenicity: the pivotal role of hemagglutinin. Cell 50: 665–666

    Article  PubMed  CAS  Google Scholar 

  • Wenner HA, Kamitsuka P (1956) Further observations on the widespread distribution of poliomyelitis virus in body tissues following intramuscular inoculation of cynomolgous monkeys. Virology 2: 83–95

    Article  PubMed  CAS  Google Scholar 

  • Wenner HA, Kamitsuka P (1957) Primary sites of virus multiplication following intramuscular inoculation of poliomyelitis virus in cynomolgous monkeys. Virology 3: 429–443

    Article  PubMed  CAS  Google Scholar 

  • Wenner HA, Rabe EF (1953) The recovery of virus from regional lymph nodes of fatal human cases of poliomyelitis. Am J Med Sci 222: 292–299

    Article  Google Scholar 

  • Westrop GD, Evans DMA, Minor PD, Magrath D, Schild GC, Almond JW (1987) Investigation of the molecular basis of attenuation in the Sabin type 3 vaccine using novel recombinant polioviruses constructed from infectious cDNA. In: The molecular biology of the positive strand RNA viruses. Rowlands DJ, Mayo MA, Mahy BWJ (eds) Liss, New York, pp 53–60

    Google Scholar 

  • Westrop GD, Wareham KA, Evans DMA, Dunn G, Minor PD, Magrath DL, Taffs F, Marsden S, Skinner MA, Schild GC, Almond JW (1989) Genetic basis of attenuation of the Sabin type 3 oral poliovirus vaccine. J. Virol. 63: 1338–1344

    PubMed  CAS  Google Scholar 

  • Wimmer E, Hellen C, Cao X (1993) Genetics of poliovirus. Annu Rev Genet 27: 353–436

    Article  PubMed  CAS  Google Scholar 

  • Wolf JC, Rubin DH, Finberg R, Kauffman RS, Sharpe AH, Trier JS, Fields BN (1981) Intestinal M Cells: a pathway for entry of reovirus into the host. Science 2: 471–472

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Racaniello, V.R., Ren, R. (1996). Poliovirus Biology and Pathogenesis. In: Chisari, F.V., Oldstone, M.B.A. (eds) Transgenic Models of Human Viral and Immunological Disease. Current Topics in Microbiology and Immunology, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85208-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85208-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85210-7

  • Online ISBN: 978-3-642-85208-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics