Skip to main content

Summary

Some theoretical models have been developed during the last twenty five years for the dispersion of a stack plume with a density larger than air. Also experiments have been carried out to investigate the properties of suck heavy plumes. A critical review about these models and experiments has been written.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schatzmann, M.: Auftriebstrahlen in natürlichen Strömungen, Entwicklung eines mathematischen Modells. Dissertation, Universität Karlsruhe 1976

    Google Scholar 

  2. Bosanquet, C.H.: The rise of a hot waste gas plume. J. of the Institute of Fuel 30 (1957) 322.

    Google Scholar 

  3. Hoot, T.G.; Meroney, R.N.; Peterka, J.A.: Wind tunnel tests of negatively buoyant plumes. Fluid Dynamics/Diffusion Laboratory, Colorado State University, Colorado 80521, 1973.

    Google Scholar 

  4. Hoult, D.P.; Fay, J.A.; Forney, L.J.: A theory of plume rise compared with field observations. J. Air. Poll. Control Ass. 19 (1969) 585.

    Google Scholar 

  5. Ooms, G.; Mahieu, A.P.; Zelis, F.: The plume path of vent gases heavier than air. First International Symposium on Loss Prevention and Safety Promotion in the Process Industries. The Hague 1974.

    Google Scholar 

  6. Keffer, J.F.; Baines, W.D.: The round turbulent jet in a cross wind. J. Fluid Mech 15 (1963) 481.

    Article  MATH  ADS  Google Scholar 

  7. Ooms, G.; Mahieu, A.P.: A comparison between a plume path model and a virtual point source model for a stack plume. Appl. Sci. Res. 36 (1981) 339.

    Article  Google Scholar 

  8. Singer, I.A.; Smith, N.E.:’ Atmospheric dispersion at Brookhaven National Laboratory. Int. J. Air and Water Pollution 10 (1966) 125.

    Google Scholar 

  9. Chu, V.H.: Turbulent dense plumes in laminar cross flow. J. Hydraulic Research 13 (1975) 263.

    Google Scholar 

  10. Bloom, S.G. A mathematical model for reactive negatively buoyant atmospheric plumes. Symposium on Heavy Gas. Frankfurt 1980.

    Google Scholar 

  11. Gifford, M.F.: An outline of theories of diffusion in the lower layer of the atmosphere. U.S. AEC Report No. TID-24190, 1968.

    Google Scholar 

  12. Hirst, E.A.: Analysis of round, turbulent, buoyant jets discharged to flowing stratified ambients. U.S. AEC Report No. ORNL-4685, 1971.

    Google Scholar 

  13. Turner, J.S.: Jets and Plumes with negative or reversing buoyancy. J. Fluid Mech 26 (1966) 779.

    Article  ADS  Google Scholar 

  14. Bodurtha, F.T.: The behaviour of dense stack gases. J. Air Poll. Control Assoc. 11 (1961) 431.

    Google Scholar 

  15. Hoehne, V.O.; Luce, R.G.: The effect of velocity, temperature and molecular weight on iiiflammibility limits in wind blown jets of hydrocarbon gases. Proc. Div. of Refining, American Petroleum Institute, 35th Mid Year Meeting 1970.

    Google Scholar 

  16. Holly, F.M.; Grace, J.L.: Model study of dense jet in flowing fluid. J. of Hydr. Div., Proc. of the ASCE 98 /9365 (1972) 1921.

    Google Scholar 

  17. Meroney, R.N.: Wind-tunnel experiments on dense gas dispersion. J. Hazardous Materials 6 (1982) 85.

    Article  Google Scholar 

  18. Anderson, J.L.; Parker, F.L.; Benedict, B.A.: Negatively buoyant jets in a cross flow, EPA–Report No. 660/2–73–012, 1973.

    Google Scholar 

  19. Abraham, G.: Round buoyant jet in cross flow. 5th International Conference on Water Pollution Research. San Francisco 1970.

    Google Scholar 

  20. Badr, A.: Temperature measurements in a negatively buoyant round vertical jet issued in a horizontal cross flow. IUTAM Symposium “Atmospheric Dispersion of heavy gases and small particles”, Scheveningen, The Netherlands 1983.

    Google Scholar 

  21. Britter, R.E.; Hunt, J.C.R.; Marsh, G.L.; Snyder, W.H.: The effects of stable stratification on turbulent diffusion and the decay of grid turbulence. J. Fluid Mech. 127 (1983) 27.

    Article  ADS  Google Scholar 

  22. Ccanady, G.T.: Turbulent diffusion in a stratified fluid. J. of Atmospheric Science 21 (1964) 439.

    Article  ADS  Google Scholar 

  23. Jones, W.P.; McGuirk, J.J.: Computation of a round turbulent jet discharging into a confined cross flow. Second Symposium on Turbulent Shear Flow, London 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Ooms, G., Duijm, N.J. (1984). Dispersion of a Stack Plume Heavier than Air. In: Ooms, G., Tennekes, H. (eds) Atmospheric Dispersion of Heavy Gases and Small Particles. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82289-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82289-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82291-9

  • Online ISBN: 978-3-642-82289-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics